skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tight spatial coupling of a marine predator with soniferous fishes: Using joint modelling to aid in ecosystem approaches to management
Abstract AimUnderstanding the distribution of marine organisms is essential for effective management of highly mobile marine predators that face a variety of anthropogenic threats. Recent work has largely focused on modelling the distribution and abundance of marine mammals in relation to a suite of environmental variables. However, biotic interactions can largely drive distributions of these predators. We aim to identify how biotic and abiotic variables influence the distribution and abundance of a particular marine predator, the bottlenose dolphin (Tursiops truncatus), using multiple modelling approaches and conducting an extensive literature review. LocationWestern North Atlantic continental shelf. MethodsWe combined widespread marine mammal and fish and invertebrate surveys in an ensemble modelling approach to assess the relative importance and capacity of the environment and other marine species to predict the distribution of both coastal and offshore bottlenose dolphin ecotypes. We corroborate the modelled results with a systematic literature review on the prey of dolphins throughout the region to help explain patterns driven by prey availability, as well as reveal new ones that may not necessarily be a predator–prey relationship. ResultsWe find that coastal bottlenose dolphin distributions are associated with one family of fishes, the Sciaenidae, or drum family, and predictions slightly improve when using only fish versus only environmental variables. The literature review suggests that this tight coupling is likely a predator–prey relationship. Comparatively, offshore dolphin distributions are more strongly related to environmental variables, and predictions are better for environmental‐only models. As revealed by the literature review, this may be due to a mismatch between the animals caught in the fish and invertebrate surveys and the predominant prey of offshore dolphins, notably squid. Main ConclusionsIncorporating prey species into distribution models, especially for coastal bottlenose dolphins, can help inform ecological relationships and predict marine predator distributions.  more » « less
Award ID(s):
2232247
PAR ID:
10487710
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Enrico Pirotta
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Diversity and Distributions
Volume:
29
Issue:
8
ISSN:
1366-9516
Page Range / eLocation ID:
1074 to 1089
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Investigating the foraging ecology and trophic interactions of threatened marine predators is critical to assess how community changes due to anthropogenic activities will affect predator–prey relationships. Two species of threatened coastal dolphins, the Indian Ocean humpback dolphin (Sousa plumbea) and the Indo‐Pacific bottlenose dolphin (Tursiops aduncus), occur off Nosy Be, north‐western Madagascar, in a region where artisanal fisheries are ecologically and socioeconomically important. Here, we investigated the feeding ecology of these two coastal dolphins and their trophic interactions with four other odontocetes using bulk stable carbon and nitrogen isotope analysis (δ13C andδ15N). Humpback dolphins had significantly enrichedδ13C values, reflecting a preference for coastal/benthic prey. Bottlenose dolphins had a broader isotopic niche, suggesting a broader range of prey and foraging habitats. The overlap in isotopic niche of all six odontocete species was limited, indicating partitioning of resources and habitats. Bayesian mass‐balance isotopic mixing models revealed that humpback dolphins forage primarily on reef planktivores (38.9%) and inner reef mesopredators (20.5%), while bottlenose dolphins had a broader diet, including reef‐associated (15%–32%) and pelagic prey (12%–23%). Our study reveals that the reliance on inshore prey by humpback dolphins may place them in competition with coastal fisheries. 
    more » « less
  2. Caballero, Susana (Ed.)
    Bottlenose dolphins ( Tursiops truncatus ) are migratory marine mammals that live in both open-ocean and coastal habitats. Although widely studied, little is known about their occurrence patterns in the highly urbanized estuary of the Chesapeake Bay, USA. The goal of this study was to establish the spatial and temporal distribution of bottlenose dolphins throughout this large estuarine system and use statistical modeling techniques to determine how their distribution relates to environmental factors. Three years (April-October 2017–2019) of dolphin sighting reports from a citizen-science database, Chesapeake DolphinWatch, were analyzed. The dolphins had a distinct temporal pattern, most commonly sighted during summer months, peaking in July. This pattern of observed occurrence was confirmed with systematic, passive acoustic detections of dolphin echolocation clicks from local hydrophones. Using spatially-exclusive Generalized Additive Models (GAM), dolphin presence was found to be significantly correlated to spring tidal phase, warm water temperature (24–30°C), and salinities ranging from 6–22 PPT. We were also able to use these GAMs to predict dolphin occurrence in the Bay. These predictions were statistically correlated to the actual number of dolphin sighting reported to Chesapeake DolphinWatch during that time. These models for dolphin presence can be implemented as a predictive tool for species occurrence and inform management of this protected species within the Chesapeake Bay. 
    more » « less
  3. The common bottlenose dolphin (Tursiops truncatus) is a key marine mammal species in the Gulf of Mexico, playing an essential role as a top predator. This study investigates the genetic diversity and population structure of bottlenose dolphins stranded in the Mississippi Sound from 2010 to 2021. Tissue samples (muscle, liver, lung, kidney, and brain) were collected from 511 stranded dolphins, and mitochondrial DNAs (mtDNA) were extracted for analysis. A total of 417 samples were successfully amplified and sequenced using high throughput sequencing, yielding 386 complete mitogenomes. Genetic diversity metrics, such as nucleotide and haplotype diversity, were calculated, and population structure was inferred for both mitochondrial control region (mtCR) and whole mitogenome sequences. Using the whole mitogenome, the study identified four genetically distinct populations within the Mississippi Sound, demonstrating regional variation in dolphin populations. Notably, two stranded individuals likely originated from populations outside the sampled area. The use of whole mitogenomes allowed for improved resolution of genetic diversity and population differentiation compared to previous studies using partial mtDNA sequences. These findings enhance our understanding of bottlenose dolphin population structure in the region and underscore the value of stranded animals for population genetic studies. 
    more » « less
  4. ABSTRACT ObjectiveThe objective of this study was to quantify the effects of temperature, hydrology, and body size on the diet and energy requirements of a generalist predator, Common Snook Centropomus undecimalis (hereafter, “snook”), to gain a better understanding of predator–prey dynamics in the wake of global change. We first ask how temperature, hydrology, and body size influence the occurrence of fish, invertebrates, and empty stomachs in the diet of snook. Next, we model the energetic requirements of snook as a function of body size and temperature. Last, we use predation simulations to test how changes in prey quality, together with snook energy requirements, interact to shape prey demand. MethodsThis study used long-term empirical diet information for snook that were collected from the Shark River, Everglades National Park, alongside models of consumer energetic needs and predation simulations. We used a set of generalized linear models to determine the relationships between snook diet and a suite of predictor variables representing hydrology, temperature, and body size. Models of consumer energetic requirements were used to better understand the total daily caloric needs of snook across a range of temperature and body sizes relative to the available energy in the fish and invertebrate prey that were collected from the system. Last, we conducted predation simulations to highlight the effects of variable diet scenarios on the foraging behaviors that are required to meet the total daily energetic requirements of snook at various temperatures and body sizes. ResultsSnook were observed consuming less fish, coupled with an increased likelihood of empty stomachs, at higher temperatures. Reliance on invertebrate taxa increased at high marsh stages. In addition to marsh stage, smaller-bodied individuals were more likely to consume invertebrates. The predation simulations revealed that snook that consumed invertebrate-dominated diets required greater prey biomass as well as an increased number of individual prey items to meet their daily energetic requirements relative to fish that consumed diets that contain fish. However, if snook maintained even a small proportion of fish in their diet, it substantially reduced the number and biomass of prey needed to meet their energetic requirements. ConclusionsOur predation simulations indicated that snook should select for high-quality fish prey as temperatures warm. However, the empirical data revealed a decrease in the probability of high-quality fish prey in the diets of snook. Furthermore, the empirical diet data showed that low-quality invertebrate prey were more likely to be seen in the diets of snook at high water levels. As temperatures increase and hydrology becomes increasingly variable because of global change, snook will likely need to consume larger quantities of lower quality prey (i.e., compensatory foraging) or disperse to forage in more optimal habitats. These results highlight the dynamic interplay between environmental conditions and consumer energetic needs for shaping the foraging ecology of a generalist predator. 
    more » « less
  5. Abstract AimThis study investigates the biogeographic patterns of Pacific white‐sided dolphins (Lagenorhynchus obliquidens) in the Eastern North Pacific based on long‐term passive acoustic records. We aim to elucidate the ecological and behavioural significance of distinct echolocation click types and their implications for population delineation, geographic distribution, environmental adaptation and management. LocationEastern North Pacific Ocean. Time Period2005–2021. Major Taxa StudiedPacific white‐sided dolphin. MethodsOver 50 cumulative years of passive acoustic monitoring (PAM) data from 14 locations were analyzed using a deep neural network to classify two distinct Pacific white‐sided dolphin echolocation click types. The study assessed spatial, diel, seasonal and interannual patterns of the two click types, correlating them with major environmental drivers such as the El Niño Southern Oscillation and the North Pacific Gyre Oscillation, and modeling long‐term spatial‐seasonal patterns. ResultsDistinct spatial, diel and seasonal patterns were observed for each click type. Significant biogeographical shifts in presence were observed following the 2014–2016 marine heatwave event. Main ConclusionsDistinct spatial distributions of the two click types support the hypothesis that Pacific white‐sided dolphins produce population‐specific echolocation clicks. Seasonal and diel patterns suggest spatiotemporal niche partitioning between the populations in Southern California. Interannual changes, notably initiated during the 2014–2016 marine heatwave, indicate climate‐driven range expansions and contractions related to gradual tropicalization of the Southern California Bight. 
    more » « less