skip to main content

Title: Spatial and temporal variation in the occurrence of bottlenose dolphins in the Chesapeake Bay, USA, using citizen science sighting data
Bottlenose dolphins ( Tursiops truncatus ) are migratory marine mammals that live in both open-ocean and coastal habitats. Although widely studied, little is known about their occurrence patterns in the highly urbanized estuary of the Chesapeake Bay, USA. The goal of this study was to establish the spatial and temporal distribution of bottlenose dolphins throughout this large estuarine system and use statistical modeling techniques to determine how their distribution relates to environmental factors. Three years (April-October 2017–2019) of dolphin sighting reports from a citizen-science database, Chesapeake DolphinWatch, were analyzed. The dolphins had a distinct temporal pattern, most commonly sighted during summer months, peaking in July. This pattern of observed occurrence was confirmed with systematic, passive acoustic detections of dolphin echolocation clicks from local hydrophones. Using spatially-exclusive Generalized Additive Models (GAM), dolphin presence was found to be significantly correlated to spring tidal phase, warm water temperature (24–30°C), and salinities ranging from 6–22 PPT. We were also able to use these GAMs to predict dolphin occurrence in the Bay. These predictions were statistically correlated to the actual number of dolphin sighting reported to Chesapeake DolphinWatch during that time. These models for dolphin presence can be implemented as a predictive tool for species more » occurrence and inform management of this protected species within the Chesapeake Bay. « less
; ; ; ;
Caballero, Susana
Award ID(s):
Publication Date:
Journal Name:
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    As demands for wildlife tourism increase, provisioning has become a popular means of providing up-close viewing to the public. At Monkey Mia, Shark Bay, Australia, up to five adult female Indo-Pacific bottlenose dolphins ( Tursiops aduncus ) visit a 100 m stretch of beach daily to receive fish handouts. In 2011, a severe marine heatwave (MHW) devastated seagrass and fish populations in Shark Bay. Offspring survival declined precipitously among seagrass specialists (dolphins that forage disproportionately in seagrass habitat). As all provisioned dolphins at the site are seagrass specialists, we examined how provisioned and non-provisioned seagrass specialists responded to the MHW. Using 27 years of data we compare habitat use, home range size, calf mortality, and predation risk between provisioned and non-provisioned females and their offspring before and after the MHW. Our results show that provisioned females have extremely small home ranges compared to non-provisioned females, a pattern attributable to their efforts to remain near the site of fish handouts. However, weaned offspring (juveniles) born to provisioned females who are not provisioned themselves also had much smaller home ranges, suggesting a persistent maternal effect on their behavior. After the MHW, adult females increased their use of seagrass habitats, but not theirmore »home range size. Provisioned females had significantly lower calf mortality than non-provisioned females, a pattern most evident pre-MHW, and, in the first 5 years after the MHW (peri-MHW, 2011–2015), calf mortality did not significantly increase for either group. However, the ecosystem did not recover, and post-MHW (2016–2020), calf mortality was substantially higher, regardless of provisioning status. With few survivors, the impact of the MHW on juvenile mortality post-weaning is not known. However, over three decades, juvenile mortality among offspring of provisioned vs. non-provisioned females did not statistically differ. Thus, the survival benefits accrued to calves in the provisioned group likely cease after weaning. Finally, although shark attack rates on seagrass specialists did not change over time, elevated predation on calves cannot be ruled out as a cause of death post-MHW. We discuss our results as they relate to anthropogenic influences on dolphin behavioral plasticity and responses to extreme climate events.« less
  2. Abstract Background

    Annually reoccurring microbial populations with strong spatial and temporal variations have been identified in estuarine environments, especially in those with long residence time such as the Chesapeake Bay (CB). However, it is unclear how microbial taxa cooccurr and how the inter-taxa networks respond to the strong environmental gradients in the estuaries.


    Here, we constructed co-occurrence networks on prokaryotic microbial communities in the CB, which included seasonal samples from seven spatial stations along the salinity gradients for three consecutive years. Our results showed that spatiotemporal variations of planktonic microbiomes promoted differentiations of the characteristics and stability of prokaryotic microbial networks in the CB estuary. Prokaryotic microbial networks exhibited a clear seasonal pattern where microbes were more closely connected during warm season compared to the associations during cold season. In addition, microbial networks were more stable in the lower Bay (ocean side) than those in the upper Bay (freshwater side). Multivariate regression tree (MRT) analysis and piecewise structural equation modeling (SEM) indicated that temperature, salinity and total suspended substances along with nutrient availability, particulate carbon and Chla, affected the distribution and co-occurrence of microbial groups, such as Actinobacteria, Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia. Interestingly, compared to the abundant groups (suchmore »as SAR11, Saprospiraceae and Actinomarinaceae), the rare taxa including OM60 (NOR5) clade (Gammaproteobacteria), Micrococcales (Actinobacteria), and NS11-12 marine group (Bacteroidetes) contributed greatly to the stability of microbial co-occurrence in the Bay. Modularity and cluster structures of microbial networks varied spatiotemporally, which provided valuable insights into the ‘small world’ (a group of more interconnected species), network stability, and habitat partitioning/preferences.


    Our results shed light on how estuarine gradients alter the spatiotemporal variations of prokaryotic microbial networks in the estuarine ecosystem, as well as their adaptability to environmental disturbances and co-occurrence network complexity and stability.

    « less
  3. Abstract

    Seasonal deoxygenation in coastal and estuarine systems leads to decreased available habitat for many planktonic organisms. However, the volume of available habitat can be defined in different ways, depending on the oxygen metrics employed. Here, we used monitoring data for water quality to estimate the seasonal and inter-annual variability in habitat for the copepod Acartia tonsa in Chesapeake Bay, defined using three different oxygen metrics: a concentration-based (2 mg l−1) definition of hypoxia, and two partial pressure-based definitions corresponding to limiting oxygen demand (Pcrit), and the minimum requirement for respiration (Pleth). We examined spatial and temporal trends in the oxygen habitat, and compared habitat estimates to zooplankton abundance and distribution and in relation to hydrologically wet, average, and dry years. Pcrit predicted the largest volume of unsuitable deoxygenated habitat over space and time, and dry conditions were associated with a decreased extent of deoxygenated habitat compared to average and wet conditions. No clear relationship between copepod abundance and habitat availability was observed, but the position of peak abundance of A. tonsa correlated to the extent of deoxygenated habitat using Pcrit. Species-specific metrics to describe oxygen habitat may be more useful in understanding the non-lethal impacts of deoxygenation.

  4. The size and distribution of Phytoplankton populations are indicators of the ecological status of a water body. The chlorophyll-a (Chl-a) concentration is estimated as a proxy for the distribution of phytoplankton biomass. Remote sensing is the only practical method for the synoptic assessment of Chl-a at large spatial and temporal scales. Long-term records of ocean color data from the MODIS Aqua Sensor have proven inadequate to assess Chl-a due to the lack of a robust ocean color algorithm. Chl-a estimation in shallow and coastal water bodies has been a challenge and existing operational algorithms are only suitable for deeper water bodies. In this study, the Ocean Color 3M (OC3M) derived Chl-a concentrations were compared with observed data to assess the performance of the OC3M algorithm. Subsequently, a regression analysis between in situ Chl-a and remote sensing reflectance was performed to obtain a green-red band algorithm for coastal (case 2) water. The OC3M algorithm yielded an accurate estimate of Chl-a for deep ocean (case 1) water (RMSE = 0.007, r2 = 0.518, p < 0.001), but failed to perform well in the coastal (case 2) water of Chesapeake Bay (RMSE = 23.217, r2 = 0.009, p = 0.356). The algorithm developedmore »in this study predicted Chl-a more accurately in Chesapeake Bay (RMSE = 4.924, r2 = 0.444, p < 0.001) than the OC3M algorithm. The study indicates a maximum band ratio formulation using green and red bands could improve the satellite estimation of Chl-a in coastal waters.« less
  5. Primary biodiversity data records that are open access and available in a standardised format are essential for conservation planning and research on policy-relevant time-scales. We created a dataset to document all known occurrence data for the Federally Endangered Poweshiek skipperling butterfly [ Oarismapoweshiek (Parker, 1870; Lepidoptera: Hesperiidae)]. The Poweshiek skipperling was a historically common species in prairie systems across the upper Midwest, United States and Manitoba, Canada. Rapid declines have reduced the number of verified extant sites to six. Aggregating and curating Poweshiek skipperling occurrence records documents and preserves all known distributional data, which can be used to address questions related to Poweshiek skipperling conservation, ecology and biogeography. Over 3500 occurrence records were aggregated over a temporal coverage from 1872 to present. Occurrence records were obtained from 37 data providers in the conservation and natural history collection community using both “HumanObservation” and “PreservedSpecimen” as an acceptable basisOfRecord. Data were obtained in different formats and with differing degrees of quality control. During the data aggregation and cleaning process, we transcribed specimen label data, georeferenced occurrences, adopted a controlled vocabulary, removed duplicates and standardised formatting. We examined the dataset for inconsistencies with known Poweshiek skipperling biogeography and phenology and we verified ormore »removed inconsistencies by working with the original data providers. In total, 12 occurrence records were removed because we identified them to be the western congener Oarismagarita (Reakirt, 1866). This resulting dataset enhances the permanency of Poweshiek skipperling occurrence data in a standardised format. This is a validated and comprehensive dataset of occurrence records for the Poweshiek skipperling ( Oarismapoweshiek ) utilising both observation and specimen-based records. Occurrence data are preserved and available for continued research and conservation projects using standardised Darwin Core formatting where possible. Prior to this project, much of these occurrence records were not mobilised and were being stored in individual institutional databases, researcher datasets and personal records. This dataset aggregates presence data from state conservation agencies, natural heritage programmes, natural history collections, citizen scientists, researchers and the U.S. Fish & Wildlife Service. The data include opportunistic observations and collections, research vouchers, observations collected for population monitoring and observations collected using standardised research methodologies. The aggregated occurrence records underwent cleaning efforts that improved data interoperablitity, removed transcription errors and verified or removed uncertain data. This dataset enhances available information on the spatiotemporal distribution of this Federally Endangered species. As part of this aggregation process, we discovered and verified Poweshiek skipperling occurrence records from two previously unknown states, Nebraska and Ohio.« less