Recent observations of caustic-crossing galaxies at redshift 0.7 ≲ z ≲ 1 show a wealth of transient events. Most of them are believed to be microlensing events of highly magnified stars. Earlier work predicts such events should be common near the critical curves (CCs) of galaxy clusters (“near region”), but some are found relatively far away from these CCs (“far region”). We consider the possibility that substructure on milliarcsecond scales (few parsecs in the lens plane) is boosting the microlensing signal in the far region. We study the combined magnification from the macrolens, millilenses, and microlenses (“3M lensing”), when the macromodel magnification is relatively low (common in the far region). After considering realistic populations of millilenses and microlenses, we conclude that the enhanced microlensing rate around millilenses is not sufficient to explain the high fraction of observed events in the far region. Instead, we find that the shape of the luminosity function (LF) of the lensed stars combined with the amount of substructure in the lens plane determines the number of microlensing events found near and far from the CC. By measuringβ(the exponent of the adopted power law LF,dN/dL = ϕ(L)∝(1/L)β), and the number density of microlensing events at each location, one can create a pseudoimage of the underlying distribution of mass on small scales. We identify two regimes: (i) positive-imaging regime whereβ > 2 and the number density of events is greater around substructures, and (ii) negative-imaging regime whereβ < 2 and the number density of microlensing events is reduced around substructures. This technique opens a new window to map the distribution of dark-matter substructure down to ∼103 M⊙. We study the particular case of seven microlensing events found in the Flashlights program in the Dragon arc (z = 0.725). A population of supergiant stars having a steep LF withβ = 2.55−0.56+0.72fits the distribution of these events in the far and near regions. We also find that the new microlensing events from JWST observations in this arc imply a surface mass density substructure of Σ∗= 54M⊙pc−2, consistent with the expected population of stars from the intracluster medium. We identify a small region of high density of microlensing events, and interpret it as evidence of a possible invisible substructure, for which we derive a mass of ∼1.3 × 108 M⊙(within its Einstein radius) in the galaxy cluster.
more »
« less
Flashlights: Properties of Highly Magnified Images Near Cluster Critical Curves in the Presence of Dark Matter Subhalos
Abstract Dark matter subhalos with extended profiles and density cores, and globular star clusters of mass 106–108M⊙that live near the critical curves in galaxy cluster lenses can potentially be detected through their lensing magnification of stars in background galaxies. In this work, we study the effect such subhalos have on lensed images, and compare to the case of more well-studied microlensing by stars and black holes near critical curves. We find that the cluster density gradient and the extended mass distribution of subhalos are important in determining image properties. Both lead to an asymmetry between the image properties on the positive- and negative-parity sides of the cluster that is more pronounced than in the case of microlensing. For example, on the negative-parity side, subhalos with cores larger than about 50 pc do not generate any images with magnification above ∼100 outside of the immediate vicinity of the cluster critical curve. We discuss these factors using analytical and numerical analysis, and exploit them to identify observable signatures of subhalos: Subhalos create pixel-to-pixel flux variations of ≳0.1 mag on the positive-parity side of clusters. These pixels tend to cluster around (otherwise invisible) subhalos. Unlike in the case of microlensing, signatures of subhalo lensing can be found up to 1″ away from the critical curves of massive clusters.
more »
« less
- PAR ID:
- 10487759
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 961
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 200
- Size(s):
- Article No. 200
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Aims.We investigate microlensing data collected by the Korea Microlensing Telescope Network (KMTNet) survey during the 2021 and 2022 seasons to identify planetary lensing events displaying a consistent anomalous pattern. Our investigation reveals that the light curves of two lensing events, KMT-2021-BLG-2609 and KMT-2022-BLG-0303, exhibit a similar anomaly, in which short-term positive deviations appear on the sides of the low-magnification lensing light curves. Methods.To unravel the nature of these anomalies, we meticulously analyze each of the lensing events. Our investigations reveal that these anomalies stem from a shared channel, wherein the source passed near the planetary caustic induced by a planet with projected separations from the host star exceeding the Einstein radius. We find that interpreting the anomaly of KMT-2021-BLG-2609 is complicated by the “inner–outer” degeneracy, whereas for KMT-2022-BLG-0303, there is no such issue despite similar lens-system configurations. In addition to this degeneracy, interpreting the anomaly in KMT-2021-BLG-2609 involves an additional degeneracy between a pair of solutions, in which the source partially envelops the caustic and the other three solutions in which the source fully envelopes the caustic. As in an earlier case of this so-called von Schlieffen–Cannae degeneracy, the former solutions have substantially higher mass ratio. Results.Through Bayesian analyses conducted based on the measured lensing observables of the event time scale and angular Einstein radius, the host of KMT-2021-BLG-2609L is determined to be a low-mass star with a mass ~0.2M⊙in terms of a median posterior value, while the planet’s mass ranges from approximately 0.032 to 0.112 times that of Jupiter, depending on the solutions. For the planetary system KMT-2022-BLG-0303L, it features a planet with a mass of approximately 0.51MJand a host star with a mass of about 0.37M⊙. In both cases, the lenses are most likely situated in the bulge.more » « less
-
Strong gravitational magnification enables the detection of faint background sources and allows researchers to resolve their internal structures and even identify individual stars in distant galaxies. Highly magnified individual stars are useful in various applications, including studies of stellar populations in distant galaxies and constraining dark matter structures in the lensing plane. However, these applications have been hampered by the small number of individual stars observed, as typically one or a few stars are identified from each distant galaxy. Here, we report the discovery of more than 40 microlensed stars in a single galaxy behind Abell 370 at redshift of 0.725 (dubbed ‘the Dragon arc’) when the Universe was half of its current age, using James Webb Space Telescope observations with the time-domain technique. These events were found near the expected lensing critical curves, suggesting that these are magnified stars that appear as transients from intracluster stellar microlenses. Through multi-wavelength photometry, we constrained their stellar types and found that many of them are consistent with red giants or supergiants magnified by factors of hundreds. This finding reveals a high occurrence of microlensing events in the Dragon arc and demonstrates that time-domain observations by the James Webb Space Telescope could lead to the possibility of conducting statistical studies of high-redshift stars.more » « less
-
Abstract We measure the stacked lensing signal in the direction of galaxy clusters in the Dark Energy Survey Year 3 (DES Y3) redMaPPer sample, using cosmic microwave background (CMB) temperature data from SPT-3G, the third-generation CMB camera on the South Pole Telescope (SPT). Here, we estimate the lensing signal using temperature maps constructed from the initial 2 years of data from the SPT-3G 'Main' survey, covering 1500 deg2of the Southern sky. We then use this lensing signal as a proxy for the mean cluster mass of the DES sample. The thermal Sunyaev-Zel'dovich (tSZ) signal, which can contaminate the lensing signal if not addressed, is isolated and removed from the data before obtaining the mass measurement. In this work, we employ three versions of the redMaPPer catalogue: a Flux-Limited sample containing 8865 clusters, a Volume-Limited sample with 5391 clusters, and a Volume&Redshift-Limited sample with 4450 clusters. For the three samples, we detect the CMB lensing signal at a significance of 12.4σ, 10.5σand 10.2σand find the mean cluster masses to be M200m= 1.66±0.13 [stat.]± 0.03 [sys.], 1.97±0.18 [stat.]± 0.05 [sys.], and 2.11±0.20 [stat.]± 0.05 [sys.]×1014M⊙, respectively. This is a factor of ∼ 2 improvement relative to the precision of measurements with previous generations of SPT surveys and the most constraining cluster mass measurements using CMB cluster lensing to date. Overall, we find no significant tensions between our results and masses given by redMaPPer mass-richness scaling relations of previous works, which were calibrated using CMB cluster lensing, optical weak lensing, and velocity dispersion measurements from various combinations of DES, SDSS and Planck data. We then divide our sample into 3 redshift and 3 richness bins, finding no significant discrepancies with optical weak-lensing calibrated masses in these bins. We forecast a 5.7% constraint on the mean cluster mass of the DES Y3 sample with the complete SPT-3G surveys when using both temperature and polarization data and including an additional ∼ 1400 deg2of observations from the 'Extended' SPT-3G survey.more » « less
-
ABSTRACT We describe how gravitational lensing of fast radio bursts (FRBs) is affected by a plasma screen in the vicinity of the lens or somewhere between the source and the observer. Wave passage through a turbulent medium affects gravitational image magnification, lensing probability (particularly for strong magnification events), and the time delay between images. The magnification is suppressed because of the broadening of the angular size of the source due to scattering by the plasma. The time delay between images is modified as the result of different dispersion measures (DM) along photon trajectories for different images. Each of the image light curves is also broadened due to wave scattering so that the images could have distinct temporal profiles. The first two effects are most severe for stellar and sub-stellar mass lens, and the last one (scatter broadening) for lenses and plasma screens at cosmological distances from the source/observer. This could limit the use of FRBs to measure their cosmic abundance. On the other hand, when the time delay between images is large, such that the light curve of a transient source has two or more well-separated peaks, the different DMs along the wave paths of different images can probe density fluctuations in the IGM on scales ≲10−6 rad and explore the patchy reionization history of the universe using lensed FRBs at high redshifts. Different rotation measures (RM) along two-image paths can convert linearly polarized radiation from a source to partial circular polarization.more » « less