skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Flashlights: Properties of Highly Magnified Images Near Cluster Critical Curves in the Presence of Dark Matter Subhalos
Abstract Dark matter subhalos with extended profiles and density cores, and globular star clusters of mass 106–108Mthat live near the critical curves in galaxy cluster lenses can potentially be detected through their lensing magnification of stars in background galaxies. In this work, we study the effect such subhalos have on lensed images, and compare to the case of more well-studied microlensing by stars and black holes near critical curves. We find that the cluster density gradient and the extended mass distribution of subhalos are important in determining image properties. Both lead to an asymmetry between the image properties on the positive- and negative-parity sides of the cluster that is more pronounced than in the case of microlensing. For example, on the negative-parity side, subhalos with cores larger than about 50 pc do not generate any images with magnification above ∼100 outside of the immediate vicinity of the cluster critical curve. We discuss these factors using analytical and numerical analysis, and exploit them to identify observable signatures of subhalos: Subhalos create pixel-to-pixel flux variations of ≳0.1 mag on the positive-parity side of clusters. These pixels tend to cluster around (otherwise invisible) subhalos. Unlike in the case of microlensing, signatures of subhalo lensing can be found up to 1″ away from the critical curves of massive clusters.  more » « less
Award ID(s):
1908823 2308051
PAR ID:
10487759
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
961
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 200
Size(s):
Article No. 200
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent observations of caustic-crossing galaxies at redshift 0.7 ≲ z ≲ 1 show a wealth of transient events. Most of them are believed to be microlensing events of highly magnified stars. Earlier work predicts such events should be common near the critical curves (CCs) of galaxy clusters (“near region”), but some are found relatively far away from these CCs (“far region”). We consider the possibility that substructure on milliarcsecond scales (few parsecs in the lens plane) is boosting the microlensing signal in the far region. We study the combined magnification from the macrolens, millilenses, and microlenses (“3M lensing”), when the macromodel magnification is relatively low (common in the far region). After considering realistic populations of millilenses and microlenses, we conclude that the enhanced microlensing rate around millilenses is not sufficient to explain the high fraction of observed events in the far region. Instead, we find that the shape of the luminosity function (LF) of the lensed stars combined with the amount of substructure in the lens plane determines the number of microlensing events found near and far from the CC. By measuringβ(the exponent of the adopted power law LF,dN/dL = ϕ(L)∝(1/L)β), and the number density of microlensing events at each location, one can create a pseudoimage of the underlying distribution of mass on small scales. We identify two regimes: (i) positive-imaging regime whereβ > 2 and the number density of events is greater around substructures, and (ii) negative-imaging regime whereβ < 2 and the number density of microlensing events is reduced around substructures. This technique opens a new window to map the distribution of dark-matter substructure down to ∼103 M. We study the particular case of seven microlensing events found in the Flashlights program in the Dragon arc (z = 0.725). A population of supergiant stars having a steep LF withβ = 2.55−0.56+0.72fits the distribution of these events in the far and near regions. We also find that the new microlensing events from JWST observations in this arc imply a surface mass density substructure of Σ= 54Mpc−2, consistent with the expected population of stars from the intracluster medium. We identify a small region of high density of microlensing events, and interpret it as evidence of a possible invisible substructure, for which we derive a mass of ∼1.3 × 108 M(within its Einstein radius) in the galaxy cluster. 
    more » « less
  2. Strong gravitational magnification enables the detection of faint background sources and allows researchers to resolve their internal structures and even identify individual stars in distant galaxies. Highly magnified individual stars are useful in various applications, including studies of stellar populations in distant galaxies and constraining dark matter structures in the lensing plane. However, these applications have been hampered by the small number of individual stars observed, as typically one or a few stars are identified from each distant galaxy. Here, we report the discovery of more than 40 microlensed stars in a single galaxy behind Abell 370 at redshift of 0.725 (dubbed ‘the Dragon arc’) when the Universe was half of its current age, using James Webb Space Telescope observations with the time-domain technique. These events were found near the expected lensing critical curves, suggesting that these are magnified stars that appear as transients from intracluster stellar microlenses. Through multi-wavelength photometry, we constrained their stellar types and found that many of them are consistent with red giants or supergiants magnified by factors of hundreds. This finding reveals a high occurrence of microlensing events in the Dragon arc and demonstrates that time-domain observations by the James Webb Space Telescope could lead to the possibility of conducting statistical studies of high-redshift stars. 
    more » « less
  3. On 2023 May 29, the LIGO-Virgo-KAGRA Collaboration observed a compact binary coalescence event consistent with a neutron star–black hole merger, though the heavier object of mass $$2.5-4.5\, {\rm M}_{\odot }$$ would fall into the purported lower mass gap. An alternative explanation for apparent observations of events in this mass range has been suggested as strongly gravitationally lensed binary neutron stars. In this scenario, magnification would lead to the source appearing closer and heavier than it really is. Here, we investigate the chances and possible consequences for the GW230529 event to be gravitationally lensed. We find this would require high magnifications and we obtain low rates for observing such an event, with a relative fraction of lensed versus unlensed observed events of $$2\times 10^{-3}$$ at most. When comparing the lensed and unlensed hypotheses accounting for the latest rates and population model, we find a $1/58$ chance of lensing, disfavouring this option. Moreover, when the magnification is assumed to be strong enough to bring the mass of the heavier binary component below the standard upper limits on neutron star masses, we find high probability for the lighter object to have a subsolar mass, making the binary even more exotic than a mass-gap neutron star–black hole system. Even when the secondary is not subsolar, its tidal deformability would likely be measurable, which is not the case for GW230529. Finally, we do not find evidence for extra lensing signatures such as the arrival of additional lensed images, type-II image dephasing, or microlensing. Therefore, we conclude it is unlikely for GW230529 to be a strongly gravitationally lensed binary neutron star signal. 
    more » « less
  4. Abstract Many recent observational and theoretical studies suggest that globular clusters (GCs) host compact object populations large enough to play dominant roles in their overall dynamical evolution. Yet direct detection, particularly of black holes and neutron stars, remains rare and limited to special cases, such as when these objects reside in close binaries with bright companions. Here we examine the potential of microlensing detections to further constrain these dark populations. Based on state-of-the-art GC models from theCMC Cluster Catalog, we estimate the microlensing event rates for black holes, neutron stars, white dwarfs (WDs), and, for comparison, also for M dwarfs in Milky Way GCs, as well as the effects of different initial conditions on these rates. Among compact objects, we find that WDs dominate the microlensing rates, simply because they largely dominate by numbers. We show that microlensing detections are in general more likely in GCs with higher initial densities, especially in clusters that undergo core collapse. We also estimate microlensing rates in the specific cases of M22 and 47 Tuc using our best-fitting models for these GCs. Because their positions on the sky lie near the rich stellar backgrounds of the Galactic bulge and the Small Magellanic Cloud, respectively, these clusters are among the Galactic GCs best suited for dedicated microlensing surveys. The upcoming 10 yr survey with the Rubin Observatory may be ideal for detecting lensing events in GCs. 
    more » « less
  5. Abstract We present COSBO-7, a strong millimeter source known for more than 16 yr that just revealed its near-to-mid-IR counterpart with the James Webb Space Telescope (JWST). The precise pinpointing by the Atacama Large Millimeter/submillimeter Array on the exquisite NIRCam and MIRI images show that it is a background source gravitationally lensed by a single foreground galaxy, and the analysis of its spectral energy distribution by different tools is in favor of photometric redshift atzph> 7. Strikingly, our lens modeling based on the JWST data shows that it has a regular disk morphology in the source plane. The dusty region giving rise to the far-IR-to-millimeter emission seems to be confined to a limited region to one side of the disk and has a high dust temperature of >90 K. The galaxy is experiencing starburst both within and outside of this dusty region. After taking the lensing magnification ofμ≈ 2.5–3.6 into account, the intrinsic star formation rate is several hundredMyr−1both within the dusty region and across the more extended stellar disk, and the latter already has >1010Mof stars in place. If it is indeed atz> 7, COSBO-7 presents an extraordinary case that is against the common wisdom about galaxy formation in the early Universe; simply put, its existence poses a critical question to be answered: how could a massive disk galaxy come into being so early in the Universe and sustain its regular morphology in the middle of an enormous starburst? 
    more » « less