Abstract With its unprecedented sensitivity and spatial resolution, the James Webb Space Telescope (JWST) has opened a new window for time-domain discoveries in the infrared. Here we report observations in the only field that has received four epochs (spanning 126 days) of JWST NIRCam observations in Cycle 1. This field is toward MACS J0416.1−2403, which is a rich galaxy cluster at redshiftz= 0.4 and is one of the Hubble Frontier Fields. We have discovered 14 transients from these data. Twelve of these transients happened in three galaxies (withz= 0.94, 1.01, and 2.091) crossing a lensing caustic of the cluster, and these transients are highly magnified by gravitational lensing. These 12 transients are likely of a similar nature to those previously reported based on the Hubble Space Telescope (HST) data in this field, i.e., individual stars in the highly magnified arcs. However, these 12 could not have been found by HST because they were too red and too faint. The other two transients are associated with background galaxies (z= 2.205 and 0.7093) that are only moderately magnified, and they are likely supernovae. They indicate a demagnified supernova surface density, when monitored at a time cadence of a few months to a ∼3–4μm survey limit of AB ∼28.5 mag, of ∼0.5 arcmin−2integrated toz≈ 2. This survey depth is beyond the capability of HST but can be easily reached by JWST.
more »
« less
This content will become publicly available on March 1, 2026
Identification of more than 40 gravitationally magnified stars in a galaxy at redshift 0.725
Strong gravitational magnification enables the detection of faint background sources and allows researchers to resolve their internal structures and even identify individual stars in distant galaxies. Highly magnified individual stars are useful in various applications, including studies of stellar populations in distant galaxies and constraining dark matter structures in the lensing plane. However, these applications have been hampered by the small number of individual stars observed, as typically one or a few stars are identified from each distant galaxy. Here, we report the discovery of more than 40 microlensed stars in a single galaxy behind Abell 370 at redshift of 0.725 (dubbed ‘the Dragon arc’) when the Universe was half of its current age, using James Webb Space Telescope observations with the time-domain technique. These events were found near the expected lensing critical curves, suggesting that these are magnified stars that appear as transients from intracluster stellar microlenses. Through multi-wavelength photometry, we constrained their stellar types and found that many of them are consistent with red giants or supergiants magnified by factors of hundreds. This finding reveals a high occurrence of microlensing events in the Dragon arc and demonstrates that time-domain observations by the James Webb Space Telescope could lead to the possibility of conducting statistical studies of high-redshift stars.
more »
« less
- Award ID(s):
- 2308051
- PAR ID:
- 10584964
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Nature Astronomy
- Date Published:
- Journal Name:
- Nature Astronomy
- Volume:
- 9
- Issue:
- 3
- ISSN:
- 2397-3366
- Page Range / eLocation ID:
- 428 to 437
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT We present size measurements of 78 high-redshift (z ≥ 5.5) galaxy candidates from the Reionization Lensing Cluster Survey (RELICS). These distant galaxies are well resolved due to the gravitational lensing power of foreground galaxy clusters, imaged by the Hubble Space Telescope and the Spitzer Space Telescope. We compute sizes using the forward-modelling code lenstruction and account for magnification using public lens models. The resulting size–magnitude measurements confirm the existence of many small galaxies with effective radii Reff < 200 pc in the early Universe, in agreement with previous studies. In addition, we highlight compact and highly star-forming sources with star formation rate surface densities $$\Sigma _\text{SFR}\gt 10\, \mathrm{M}_\odot \, \text{yr}^{-1}\, \text{kpc}^{-2}$$ as possible Lyman continuum leaking candidates that could be major contributors to the process of reionization. Future spectroscopic follow-up of these compact galaxies (e.g. with the James Webb Space Telescope) will further clarify their role in reionization and the physics of early star formation.more » « less
-
In this work, we present a constraint on the abundance of supergiant (SG) stars at redshiftz ≈ 1, based on recent observations of a strongly lensed arc at this redshift. First we derived a free-form model of MACS J0416.1-2403 using data from the Beyond Ultra-deep Frontier Fields and Legacy Observations (BUFFALO) program. The new lens model is based on 72 multiply lensed galaxies that produce 214 multiple images, making it the largest sample of spectroscopically confirmed lensed galaxies on this cluster. The larger coverage in BUFFALO allowed us to measure the shear up to the outskirts of the cluster, and extend the range of lensing constraints up to ∼1 Mpc from the central region, providing a mass estimate up to this radius. As an application, we make predictions for the number of high-redshift multiply lensed galaxies detected in future observations with theJames WebbSpace Telescope (JWST). Then we focus on a previously known lensed galaxy atz = 1.0054, nicknamed Spock, which contains four previously reported transients. We interpret these transients as microcaustic crossings of SG stars and explain how we computed the probability of such events. Based on simplifications regarding the stellar evolution, we find that microlensing (by stars in the intracluster medium) of SG stars atz = 1.0054 can fully explain these events. The inferred abundance of SG stars is consistent with either (1) a number density of stars with bolometric luminosities beyond the Humphreys-Davidson (HD) limit (Lmax ≈ 6 × 105 L⊙for red stars), which is below ∼400 stars kpc−2, or (2) the absence of stars beyond the HD limit but with a SG number density of ∼9000 kpc−2for stars with luminosities between 105 L⊙and 6 × 105 L⊙. This is equivalent to one SG star per 10 × 10 pc2. Finally, we make predictions for future observations with JWST’s NIRcam. We find that in observations made with theF200Wfilter that reach 29 mag AB, if cool red SG stars exist atz ≈ 1 beyond the HD limit, they should be easily detected in this arc.more » « less
-
Abstract The gravitationally lensed star WHL 0137–LS, nicknamed Earendel, was identified with a photometric redshift z phot = 6.2 ± 0.1 based on images taken with the Hubble Space Telescope. Here we present James Webb Space Telescope (JWST) Near Infrared Camera images of Earendel in eight filters spanning 0.8–5.0 μ m. In these higher-resolution images, Earendel remains a single unresolved point source on the lensing critical curve, increasing the lower limit on the lensing magnification to μ > 4000 and restricting the source plane radius further to r < 0.02 pc, or ∼4000 au. These new observations strengthen the conclusion that Earendel is best explained by an individual star or multiple star system and support the previous photometric redshift estimate. Fitting grids of stellar spectra to our photometry yields a stellar temperature of T eff ≃ 13,000–16,000 K, assuming the light is dominated by a single star. The delensed bolometric luminosity in this case ranges from log ( L ) = 5.8 to 6.6 L ⊙ , which is in the range where one expects luminous blue variable stars. Follow-up observations, including JWST NIRSpec scheduled for late 2022, are needed to further unravel the nature of this object, which presents a unique opportunity to study massive stars in the first billion years of the universe.more » « less
-
Abstract We report the discovery of an extremely magnified star at redshiftz= 2.65 in the James Webb Space Telescope (JWST) NIRISS pre-imaging of the A2744 galaxy-cluster field. The star’s background host galaxy lies on a fold caustic of the foreground lens, and the cluster creates a pair of images of the region close to the lensed star. We identified the bright transient in one of the merging images at a distance of ∼0.″15 from the critical curve by subtracting the JWST F115W and F150W imaging from coadditions of archival Hubble Space Telescope (HST) F105W and F125W images and F140W and F160W images, respectively. Since the time delay between the two images should be only hours, the transient must be the microlensing event of an individual star, as opposed to a luminous stellar explosion that would persist for days to months. Analysis of individual exposures suggests that the star’s magnification is not changing rapidly during the observations. From photometry of the point source through the F115W, F150W, and F200W filters, we identify a strong Balmer break, and modeling allows us to constrain the star’s temperature to be approximately 7000–12,000 K.more » « less