skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The art of compartment design for synthetic catalysts
Compartmentalization of catalysts has potential to become a powerful synthetic tool, however, further work in understanding its fundamental principles is required. Herein, those principles are elucidated through the lens of biomimicry.  more » « less
Award ID(s):
2023955
PAR ID:
10487795
Author(s) / Creator(s):
; ;
Publisher / Repository:
RSC
Date Published:
Journal Name:
Inorganic Chemistry Frontiers
Volume:
10
Issue:
5
ISSN:
2052-1553
Page Range / eLocation ID:
1402 to 1410
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Infrastructure must be resilient to both known and unknown disturbances. In the past, resilient infrastructure design efforts have tended to focus on principles of robustness and recovery against projected failures. This framing has developed independently from resilience principles in biological and ecological systems. As such, there are open questions as to whether the approaches of natural systems that lead to adaptation and transformation are relevant to engineered systems. To improve engineered system resilience, infrastructure managers may benefit from considering and applying a set of “Life's Principles”—design principles and patterns drawn from the field of biomimicry. Nature has long withstood disturbances within and beyond previous experience. Infrastructure resilience theory and practice are assessed against Life's Principles identifying alignments, contradictions, contentions, and gaps. Resilient infrastructure theory, which emphasizes a need for flexible and agile infrastructure, aligns well with Life's Principles, addressing each principle and most sub‐principles (excluding “breakdown products into benign components” and “do chemistry in water”). Meanwhile, resilient infrastructure practice only occasionally aligns with Life's Principles and contradicts five out of six principles. As resilience theory advances, Life's Principles offer support in broadening how infrastructure managers approach resilience, and by using biomimicry, infrastructure managers can be better equipped to deploy resilience for complexity and uncertainty. 
    more » « less
  2. Abstract Hydrogen bonding principles are at the core of supramolecular design. This overview features a discussion relating molecular structure to hydrogen bond strengths, highlighting the following electronic effects on hydrogen bonding: electronegativity, steric effects, electrostatic effects, π‐conjugation, and network cooperativity. Historical developments, along with experimental and computational efforts, leading up to the birth of the hydrogen bond concept, the discovery of nonclassical hydrogen bonds (CH…O, OH…π, dihydrogen bonding), and the proposal of hydrogen bond design principles (e.g., secondary electrostatic interactions, resonance‐assisted hydrogen bonding, and aromaticity effects) are outlined. Applications of hydrogen bond design principles are presented. This article is categorized under: Structure and Mechanism > Molecular Structures Structure and Mechanism > Reaction Mechanisms and Catalysis 
    more » « less
  3. Abstract Introduced in 2016, the FAIR Guiding Principles endeavour to significantly improve the process of today's data‐driven research. The Principles present a concise set of fundamental concepts that can facilitate the findability, accessibility, interoperability and reuse (FAIR) of digital research objects by both machines and human beings. The emergence of FAIR has initiated a flurry of activity within the broader data publication community, yet the principles are still not fully understood by many community stakeholders. This has led to challenges such as misinterpretation and co‐opted use, along with persistent gaps in current data publication culture, practices and infrastructure that need to be addressed to achieve a FAIR data end‐state. This paper presents an overview of the practices and perspectives related to the FAIR Principles within the Geosciences and offers discussion on the value of the principles in the larger context of what they are trying to achieve. The authors of this article recommend using the principles as a tool to bring awareness to the types of actions that can improve the practice of data publication to meet the needs of all data consumers. FAIR Guiding Principles should be interpreted as an aspirational guide to focus behaviours that lead towards a more FAIR data environment. The intentional discussions and incremental changes that bring us closer to these aspirations provide the best value to our community as we build the capacity that will support and facilitate new discovery of earth systems. 
    more » « less
  4. The scientific community has been looking for novel approaches to develop nanostructures inspired by nature. However, due to the complicated processes involved, controlling the height of these nanostructures is challenging. Nanoscale capillary force lithography (CFL) is one way to use a photopolymer and alter its properties by exposing it to ultraviolet radiation. Nonetheless, the working mechanism of CFL is not fully understood due to a lack of enough information and first principles. One of these obscure behaviors is the sudden jump phenomenon—the sudden change in the height of the photopolymer depending on the UV exposure time and height of nano-grating (based on experimental data). This paper uses known physical principles alongside artificial intelligence to uncover the unknown physical principles responsible for the sudden jump phenomenon. The results showed promising results in identifying air diffusivity, dynamic viscosity, surface tension, and electric potential as the previously unknown physical principles that collectively explain the sudden jump phenomenon. 
    more » « less
  5. Abstract Sexual and gender minorities face considerable inequities in society, including in science. In biology, course content provides opportunities to challenge harmful preconceptions about what is “natural” while avoiding the notion that anything found in nature is inherently good (the appeal-to-nature fallacy). We provide six principles for instructors to teach sex- and gender-related topics in postsecondary biology in a more inclusive and accurate manner: highlighting biological diversity early, presenting the social and historical context of science, using inclusive language, teaching the iterative process of science, presenting students with a diversity of role models, and developing a classroom culture of respect and inclusion. To illustrate these six principles, we review the many definitions of sex and demonstrate applying the principles to three example topics: sexual reproduction, sex determination or differentiation, and sexual selection. These principles provide a tangible starting place to create more scientifically accurate, engaging, and inclusive classrooms. 
    more » « less