skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Collaborative methods to enhance reproducibility and accelerate discovery
The discoveries that will advance science in profound ways will be made possible by collaborative, multidisciplinary efforts. These efforts require practices and incentives for sharing methods and data, and for leveraging complementary capabilities.  more » « less
Award ID(s):
2018427
PAR ID:
10487822
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
RSC
Date Published:
Journal Name:
Digital Discovery
Volume:
2
Issue:
1
ISSN:
2635-098X
Page Range / eLocation ID:
12 to 27
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Machine learning (ML) has become a central focus of the computational chemistry community. I will first discuss my personal history in the field. Then I will provide a broader view of how this resurgence in ML interest echoes and advances upon earlier efforts. Although numerous changes have brought about this latest wave, one of the most significant is the increased accuracy and efficiency of low‐cost methods (e. g., density functional theory or DFT) that have made it possible to generate large data sets for ML models. ML has also been used to bypass, guide, or improve DFT. The field of computational chemistry thus finds itself at a crossroads as ML both augments and supersedes traditional efforts. I will present what I believe the role of the computational chemist will be in this evolving landscape, with specific focus on my experience in the development of autonomous workflows in computational materials discovery for open‐shell transition‐metal chemistry. 
    more » « less
  2. null (Ed.)
    Abstract The ability to measure total and phosphorylated tau levels in clinical samples is transforming the detection of Alzheimer’s disease (AD) and other neurodegenerative diseases. In particular, recent reports indicate that accurate detection of low levels of phosphorylated tau (p-tau) in plasma provides a reliable biomarker of AD long before sensing memory loss. Therefore, the diagnosis and monitoring of neurodegenerative diseases progression using blood samples is becoming a reality. These major advances were achieved by using antibodies specific to p-tau as well as sophisticated high-sensitivity immunoassay platforms. This review focuses on these enabling advances in high-specificity antibody development, engineering, and novel signal detection methods. We will draw insights from structural studies on p-tau antibodies, engineering efforts to improve their binding properties, and efforts to validate their specificity. A comprehensive survey of high-sensitivity p-tau immunoassay platforms along with sensitivity limits will be provided. We conclude that although robust approaches for detecting certain p-tau species have been established, systematic efforts to validate antibodies for assay development is still needed for the recognition of biomarkers for AD and other neurodegenerative diseases. 
    more » « less
  3. As the impact of COVID-19 on society became apparent, the engineering and scientific community recognized the need for innovative solutions. Two potential roadmaps emerged: developing short-term solutions to address the immediate needs of the healthcare communities and developing mid/long-term solutions to eliminate the over-arching threat. However, in a truly global effort, researchers from all backgrounds came together in tackling this challenge. Short-term efforts have focused on re-purposing existing technologies and leveraging additive manufacturing techniques to address shortages in personal protective equipment and disinfection. More basic research efforts with mid-term and long-term impact have emphasized developing novel diagnostics and accelerating vaccines. As a foundational technology, photonics has contributed directly and indirectly to all efforts. This perspective will provide an overview of the critical role that the photonics field has played in efforts to combat the immediate COVID-19 pandemic as well as how the photonics community could anticipate contributing to future pandemics of this nature. 
    more » « less
  4. Thrash, J Cameron (Ed.)
    ABSTRACT An enrichment of sulfidic sediments from Zodletone spring was sequenced as a metagenome. Draft genomes representing Cloacimonadota, Deltabacterota, Firmicutes, and Patescibacteria were binned and annotated and will aid functional genomics and cultivation efforts. 
    more » « less
  5. Abstract The field of sub-terahertz wireless communications is advancing rapidly, with major research efforts ramping up around the globe. To address some of the significant hurdles associated with exploiting these high frequencies for broadband and secure networking, systems will require extensive new capabilities for sensing their environment and manipulating their broadcasts. Based on these requirements, a vision for future wireless systems is beginning to emerge. In this Perspective article, we discuss some of the prominent challenges and possible solutions which are at the forefront of current research, and which will contribute to the architecture of wireless platforms beyond 5G. 
    more » « less