skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Asymmetric relationships and their effects on coexistence
Abstract Species coexistence attracts wide interest in ecology. Modern coexistence theory (MCT) identifies coexistence mechanisms, one of which, storage effects, hinges on relationships between fluctuations in environmental and competitive pressures. However, such relationships are typically measured using covariance, which does not account for the possibility that environment and competition may be more related to each other when they are strong than when weak, or vice versa. Recent work showed that such ‘asymmetric tail associations’ (ATAs) are common between ecological variables, and are important for extinction risk, ecosystem stability, and other phenomena. We extend MCT, decomposing storage effects to show the influence of ATAs. Analysis of a simple model and an empirical example using diatoms illustrate that ATA influences can be comparable in magnitude to other mechanisms of coexistence and that ATAs can make the difference between species coexistence and competitive exclusion. ATA influences may be an important new mechanism of coexistence.  more » « less
Award ID(s):
2023474
PAR ID:
10487871
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
27
Issue:
1
ISSN:
1461-023X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract While most studies of species coexistence focus on the mechanisms that maintain coexistence, it is equally important to understand the mechanisms that structure failed coexistence. For example, California annual grasslands are heavily invaded ecosystems, where non‐native annuals have largely dominated and replaced native communities. These systems are also highly variable, with a high degree of rainfall seasonality and interannual rainfall variability—a quality implicated in the coexistence of functionally distinct species. Yet, despite the apparent strength of this variation, coexistence between native and non‐native annuals in this system has faltered.To test how variation‐dependent coexistence mechanisms modulate failed coexistence, we implemented a competition experiment between two previously common native forbs and three now‐dominant non‐native annual grasses spanning a conservative‐acquisitive range of traits. We grew individuals from each species under varying densities of all other species as competitors, under either wetter or drier early season rainfall treatments. Using subsequent seed production, we parameterized competition models, assessed the potential for coexistence among species pairs and quantified the relative influence of variation‐dependent coexistence mechanisms.As expected, we found little potential for coexistence. Competition was dominated by the non‐native grassAvena fatua, while native forbs were unable to invade non‐native grasses. Mutual competitive exclusion was common across almost all species and often contingent on rainfall, suggesting rainfall‐mediated priority effects. Among variation‐dependent mechanisms, the temporal storage effect had a moderate stabilizing effect for four of five species when averaged across competitors, while relative nonlinearity in competition was largely destabilizing, except for the most conservative non‐native grass, which benefited from a competitive release under dry conditions.Synthesis: Our findings suggest that rainfall variability does little to mitigate the fitness differences that underlie widespread annual grass invasion in California, but that it influences coexistence dynamics among the now‐dominant non‐native grasses. 
    more » « less
  2. Taylor, Caz M (Ed.)
    Abstract: One strand of modern coexistence theory (MCT) partitions invader growth rates (IGR) to quantify how different mechanisms contribute to species coexistence, highlighting fluctuation‐dependent mechanisms. A general conclusion from the classical analytic MCT theory is that coexistence mechanisms relying on temporal variation (such as the temporal storage effect) are generally less effective at promoting coexistence than mechanisms relying on spatial or spatiotemporal variation (primarily growth‐density covariance). However, the analytic theory assumes continuous population density, and IGRs are calculated for infinitesimally rare invaders that have infinite time to find their preferred habitat and regrow, without ever experiencing intraspecific competition. Here we ask if the disparity between spatial and temporal mechanisms persists when individuals are, instead, discrete and occupy finite amounts of space. We present a simulation‐based approach to quantifying IGRs in this situation, building on our previous approach for spatially non‐varying habitats. As expected, we found that spatial mechanisms are weakened; unexpectedly, the contribution to IGR from growth‐density covariance could even become negative, opposing coexistence. We also found shifts in which demographic parameters had the largest effect on the strength of spatial coexistence mechanisms. Our substantive conclusions are statements about one model, across parameter ranges that we subjectively considered realistic. Using the methods developed here, effects of individual discreteness should be explored theoretically across a broader range of conditions, and in models parameterized from empirical data on real communities. 
    more » « less
  3. Modern coexistence theory is increasingly used to explain how differences between competing species lead to coexistence versus competitive exclusion. Although research testing this theory has focused on deterministic cases of competitive exclusion, in which the same species always wins, mounting evidence suggests that competitive exclusion is often historically contingent, such that whichever species happens to arrive first excludes the other. Coexistence theory predicts that historically contingent exclusion, known as priority effects, will occur when large destabilizing differences (positive frequency-dependent growth rates of competitors), combined with small fitness differences (differences in competitors’ intrinsic growth rates and sensitivity to competition), create conditions under which neither species can invade an established population of its competitor. Here we extend the empirical application of modern coexistence theory to determine the conditions that promote priority effects. We conducted pairwise invasion tests with four strains of nectar-colonizing yeasts to determine how the destabilizing and fitness differences that drive priority effects are altered by two abiotic factors characterizing the nectar environment: sugar concentration and pH. We found that higher sugar concentrations increased the likelihood of priority effects by reducing fitness differences between competing species. In contrast, higher pH did not change the likelihood of priority effects, but instead made competition more neutral by bringing both fitness differences and destabilizing differences closer to zero. This study demonstrates how the empirical partitioning of priority effects into fitness and destabilizing components can elucidate the pathways through which environmental conditions shape competitive interactions. 
    more » « less
  4. Abstract Community ecology typically assumes that competitive exclusion and species coexistence are unaffected by evolution on the time scale of ecological dynamics. However, recent studies suggest that rapid evolution operating concurrently with competition may enable species coexistence. Such findings necessitate general theory that incorporates the coexistence contributions of eco‐evolutionary processes in parallel with purely ecological mechanisms and provides metrics for quantifying the role of evolution in shaping competitive outcomes in both modelling and empirical contexts. To foster the development of such theory, here we extend the interpretation of the two principal metrics of modern coexistence theory—niche and competitive ability differences—to systems where competitors evolve. We define eco‐evolutionary versions of these metrics by considering how invading and resident species adapt to conspecific and heterospecific competitors. We show that the eco‐evolutionary niche and competitive ability differences are sums of ecological and evolutionary processes, and that they accurately predict the potential for stable coexistence in previous theoretical studies of eco‐evolutionary dynamics. Finally, we show how this theory frames recent empirical assessments of rapid evolution effects on species coexistence, and how empirical work and theory on species coexistence and eco‐evolutionary dynamics can be further integrated. 
    more » « less
  5. Major theories regarding microbe‐mediated plant community dynamics assume that plant species cultivate distinct microbial communities. However, few studies empirically assess the role of species‐associated microbial community dissimilarity in plant competitive dynamics. In this study, we paired a competition experiment between eight annual forbs with characterisation of species‐associated fungal communities to assess whether mycobiome dissimilarity is associated with pairwise competitive dynamics. 
    more » « less