skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ERSAM: Neural Architecture Search for Energy-Efficient and Real-Time Social Ambiance Measurement
Social ambiance describes the context in which social interactions happen, and can be measured using speech audio by counting the number of concurrent speakers. This measurement has enabled various mental health tracking and human-centric IoT applications. While on-device Socal Ambiance Measure (SAM) is highly desirable to ensure user privacy and thus facilitate wide adoption of the aforementioned applications, the required computational complexity of state-of-the-art deep neural networks (DNNs) powered SAM solutions stands at odds with the often constrained resources on mobile devices. Furthermore, only limited labeled data is available or practical when it comes to SAM under clinical settings due to various privacy constraints and the required human effort, further challenging the achievable accuracy of on-device SAM solutions. To this end, we propose a dedicated neural architecture search framework for Energy-efficient and Real-time SAM (ERSAM). Specifically, our ERSAM framework can automatically search for DNNs that push forward the achievable accuracy vs. hardware efficiency frontier of mobile SAM solutions. For example, ERSAM-delivered DNNs only consume 40 mW • 12 h energy and 0.05 seconds processing latency for a 5 seconds audio segment on a Pixel 3 phone, while only achieving an error rate of 14.3% on a social ambiance dataset generated by LibriSpeech. We can expect that our ERSAM framework can pave the way for ubiquitous on-device SAM solutions which are in growing demand.  more » « less
Award ID(s):
1937592
PAR ID:
10487907
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
ISBN:
978-1-7281-6327-7
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Location:
Rhodes Island, Greece
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep neural networks (DNNs) have gained considerable attention in various real-world applications due to the strong performance on representation learning. However, a DNN needs to be trained many epochs for pursuing a higher inference accuracy, which requires storing sequential versions of DNNs and releasing the updated versions to users. As a result, large amounts of storage and network resources are required, which significantly hamper DNN utilization on resource-constrained platforms (e.g., IoT, mobile phone). In this paper, we present a novel delta compression framework called Delta-DNN, which can efficiently compress the float-point numbers in DNNs by exploiting the floats similarity existing in DNNs during training. Specifically, (1) we observe the high similarity of float-point numbers between the neighboring versions of a neural network in training; (2) inspired by delta compression technique, we only record the delta (i.e., the differences) between two neighboring versions, instead of storing the full new version for DNNs; (3) we use the error-bounded lossy compression to compress the delta data for a high compression ratio, where the error bound is strictly assessed by an acceptable loss of DNNs’ inference accuracy; (4) we evaluate Delta-DNN’s performance on two scenarios, including reducing the transmission of releasing DNNs over network and saving the storage space occupied by multiple versions of DNNs. According to experimental results on six popular DNNs, DeltaDNN achieves the compression ratio 2x~10x higher than state-ofthe-art methods, while without sacrificing inference accuracy and changing the neural network structure. 
    more » « less
  2. Neural architecture search (NAS) is a promising technique to design efficient and high-performance deep neural networks (DNNs). As the performance requirements of ML applications grow continuously, the hardware accelerators start playing a central role in DNN design. This trend makes NAS even more complicated and time-consuming for most real applications. This paper proposes FLASH, a very fast NAS methodology that co-optimizes the DNN accuracy and performance on a real hardware platform. As the main theoretical contribution, we first propose the NN-Degree, an analytical metric to quantify the topological characteristics of DNNs with skip connections (e.g., DenseNets, ResNets, Wide-ResNets, and MobileNets). The newly proposed NN-Degree allows us to do training-free NAS within one second and build an accuracy predictor by training as few as 25 samples out of a vast search space with more than 63 billion configurations. Second, by performing inference on the target hardware, we fine-tune and validate our analytical models to estimate the latency, area, and energy consumption of various DNN architectures while executing standard ML datasets. Third, we construct a hierarchical algorithm based on simplicial homology global optimization (SHGO) to optimize the model-architecture co-design process, while considering the area, latency, and energy consumption of the target hardware. We demonstrate that, compared to the state-of-the-art NAS approaches, our proposed hierarchical SHGO-based algorithm enables more than four orders of magnitude speedup (specifically, the execution time of the proposed algorithm is about 0.1 seconds). Finally, our experimental evaluations show that FLASH is easily transferable to different hardware architectures, thus enabling us to do NAS on a Raspberry Pi-3B processor in less than 3 seconds. 
    more » « less
  3. Though recent years have witnessed remarkable progress in single image super-resolution (SISR) tasks with the prosperous development of deep neural networks (DNNs), the deep learning methods are confronted with the computation and memory consumption issues in practice, especially for resource-limited platforms such as mobile devices. To overcome the challenge and facilitate the real-time deployment of SISR tasks on mobile, we combine neural architecture search with pruning search and propose an automatic search framework that derives sparse super-resolution (SR) models with high image quality while satisfying the real-time inference requirement. To decrease the search cost, we leverage the weight sharing strategy by introducing a supernet and decouple the search problem into three stages, including supernet construction, compiler-aware architecture and pruning search, and compiler-aware pruning ratio search. With the proposed framework, we are the first to achieve real-time SR inference (with only tens of milliseconds per frame) for implementing 720p resolution with competitive image quality (in terms of PSNR and SSIM) on mobile platforms (Samsung Galaxy S20). 
    more » « less
  4. null (Ed.)
    We propose Zygarde --- which is an energy- and accuracy-aware soft real-time task scheduling framework for batteryless systems that flexibly execute deep learning tasks1 that are suitable for running on microcontrollers. The sporadic nature of harvested energy, resource constraints of the embedded platform, and the computational demand of deep neural networks (DNNs) pose a unique and challenging real-time scheduling problem for which no solutions have been proposed in the literature. We empirically study the problem and model the energy harvesting pattern as well as the trade-off between the accuracy and execution of a DNN. We develop an imprecise computing-based scheduling algorithm that improves the timeliness of DNN tasks on intermittently powered systems. We evaluate Zygarde using four standard datasets as well as by deploying it in six real-life applications involving audio and camera sensor systems. Results show that Zygarde decreases the execution time by up to 26% and schedules 9% -- 34% more tasks with up to 21% higher inference accuracy, compared to traditional schedulers such as the earliest deadline first (EDF). 
    more » « less
  5. The large model size, high computational operations, and vulnerability against membership inference attack (MIA) have impeded deep learning or deep neural networks (DNNs) popularity, especially on mobile devices. To address the challenge, we envision that the weight pruning technique will help DNNs against MIA while reducing model storage and computational operation. In this work, we propose a pruning algorithm, and we show that the proposed algorithm can find a subnetwork that can prevent privacy leakage from MIA and achieves competitive accuracy with the original DNNs. We also verify our theoretical insights with experiments. Our experimental results illustrate that the attack accuracy using model compression is up to 13.6% and 10% lower than that of the baseline and Min-Max game, accordingly. 
    more » « less