skip to main content


This content will become publicly available on January 31, 2025

Title: A References Architecture for Human Cyber Physical Systems, Part II: Fundamental Design Principles for Human-CPS Interaction

As automation increases qualitatively and quantitatively in safety-critical human cyber-physical systems, it is becoming more and more challenging to increase the probability or ensure that human operators still perceive key artifacts and comprehend their roles in the system. In the companion paper, we proposed an abstract reference architecture capable of expressing all classes of system-level interactions in human cyber-physical systems. Here we demonstrate how this reference architecture supports the analysis of levels of communication between agents and helps to identify the potential for misunderstandings and misconceptions. We then develop a metamodel for safe human machine interaction. Therefore, we ask what type of information exchange must be supported on what level so that humans and systems can cooperate as a team, what is the criticality of exchanged information, what are timing requirements for such interactions, and how can we communicate highly critical information in a limited time frame in spite of the many sources of a distorted perception. We highlight shared stumbling blocks and illustrate shared design principles, which rest on established ontologies specific to particular application classes. In order to overcome the partial opacity of internal states of agents, we anticipate a key role of virtual twins of both human and technical cooperation partners for designing a suitable communication.

 
more » « less
Award ID(s):
1743772
NSF-PAR ID:
10488279
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Editor(s):
Chenyang Lu
Publisher / Repository:
ACM Transactions on Cyber-Physical Systems
Date Published:
Journal Name:
ACM Transactions on Cyber-Physical Systems
Volume:
8
Issue:
1
ISSN:
2378-962X
Page Range / eLocation ID:
1 to 27
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chenyang Lu (Ed.)

    We propose a reference architecture of safety-critical or industry-critical human cyber-physical systems (CPSs) capable of expressing essential classes of system-level interactions between CPS and humans relevant for the societal acceptance of such systems. To reach this quality gate, the expressivity of the model must go beyond classical viewpoints such as operational, functional, and architectural views and views used for safety and security analysis. The model does so by incorporating elements of such systems for mutual introspections in situational awareness, capabilities, and intentions to enable a synergetic, trusted relation in the interaction of humans and CPSs, which we see as a prerequisite for their societal acceptance. The reference architecture is represented as a metamodel incorporating conceptual and behavioral semantic aspects. We illustrate the key concepts of the metamodel with examples from cooperative autonomous driving, the operating room of the future, cockpit-tower interaction, and crisis management.

     
    more » « less
  2. null (Ed.)
    With increasing automation, the ‘human’ element in industrial systems is gradually being reduced, often for the sake of standardization. Complete automation, however, might not be optimal in complex, uncertain environments due to the dynamic and unstructured nature of interactions. Leveraging human perception and cognition can prove fruitful in making automated systems robust and sustainable. “Human-in-the-loop” (HITL) systems are systems which incorporate meaningful human interactions into the workflow. Agricultural Robotic Systems (ARS), developed for the timely detection and prevention of diseases in agricultural crops, are an example of cyber-physical systems where HITL augmentation can provide improved detection capabilities and system performance. Humans can apply their domain knowledge and diagnostic skills to fill in the knowledge gaps present in agricultural robotics and make them more resilient to variability. Owing to the multi-agent nature of ARS, HUB-CI, a collaborative platform for the optimization of interactions between agents is emulated to direct workflow logic. The challenge remains in designing and integrating human roles and tasks in the automated loop. This article explains the development of a HITL simulation for ARS, by first realistically modeling human agents, and exploring two different modes by which they can be integrated into the loop: Sequential, and Shared Integration. System performance metrics such as costs, number of tasks, and classification accuracy are measured and compared for different collaboration protocols. The results show the statistically significant advantages of HUB-CI protocols over the traditional protocols for each integration, while also discussing the competitive factors of both integration modes. Strengthening human modeling and expanding the range of human activities within the loop can help improve the practicality and accuracy of the simulation in replicating a HITL-ARS. 
    more » « less
  3. null (Ed.)
    Real-time communication and control are essential parts of the Cyber Physical System (CPS) to optimize effective performance and reliability. To gain a sustainable competitive advantage with Automation 5.0, as needed in Work-of-the-Future, this article addresses the concept of real-time communication and control in the case of an agricultural work setting, along with a newly designed Cyber Collaborative Protocol, called CCP-RTC2. The developed protocol aims to minimize information delay and maximize JIN (Just In Need) information sharing, to enable collaborative decisions among system agents. Two experiments are conducted to compare the designed protocol’s performance in agricultural CPS against the current non-CPS practice. The results demonstrate that the CCP-RTC2 is superior compared with current practice in terms of information sharing in a normal operation scenario. When the system obtains an unplanned request, the CCP-RTC2 can integrate such a request to the original work plan while minimizing the system’s objective function (lower is better). Hence, the system has relatively smaller information delays, as well as better timely information shared with system agents that need it. 
    more » « less
  4. null (Ed.)
    Cyber Physical Systems (CPS) are characterized by their ability to integrate the physical and information or cyber worlds. Their deployment in critical infrastructure have demonstrated a potential to transform the world. However, harnessing this potential is limited by their critical nature and the far reaching effects of cyber attacks on human, infrastructure and the environment. An attraction for cyber concerns in CPS rises from the process of sending information from sensors to actuators over the wireless communication medium, thereby widening the attack surface. Traditionally, CPS security has been investigated from the perspective of preventing intruders from gaining access to the system using cryptography and other access control techniques. Most research work have therefore focused on the detection of attacks in CPS. However, in a world of increasing adversaries, it is becoming more difficult to totally prevent CPS from adversarial attacks, hence the need to focus on making CPS resilient. Resilient CPS are designed to withstand disruptions and remain functional despite the operation of adversaries. One of the dominant methodologies explored for building resilient CPS is dependent on machine learning (ML) algorithms. However, rising from recent research in adversarial ML, we posit that ML algorithms for securing CPS must themselves be resilient. This article is therefore aimed at comprehensively surveying the interactions between resilient CPS using ML and resilient ML when applied in CPS. The paper concludes with a number of research trends and promising future research directions. Furthermore, with this article, readers can have a thorough understanding of recent advances on ML-based security and securing ML for CPS and countermeasures, as well as research trends in this active research area. 
    more » « less
  5. null (Ed.)
    Intelligent utilization of resources and improved mission performance in an autonomous agent require consideration of cyber and physical resources. The allocation of these resources becomes more complex when the system expands from one agent to multiple agents, and the control shifts from centralized to decentralized. Consensus is a distributed algorithm that lets multiple agents agree on a shared value, but typically does not leverage mobility. We propose a coupled consensus control strategy that co-regulates computation, communication frequency, and connectivity of the agents to achieve faster convergence times at lower communication rates and computational costs. In this strategy, agents move towards a common location to increase connectivity. Simultaneously, the communication frequency is increased when the shared state error between an agent and its connected neighbors is high. When the shared state converges (i.e., consensus is reached), the agents withdraw to the initial positions and the communication frequency is decreased. Convergence properties of our algorithm are demonstrated under the proposed co-regulated control algorithm. We evaluated the proposed approach through a new set of cyber-physical, multi-agent metrics and demonstrated our approach in a simulation of unmanned aircraft systems measuring temperatures at multiple sites. The results demonstrate that, compared with fixed-rate and event-triggered consensus algorithms, our co-regulation scheme can achieve improved performance with fewer resources, while maintaining high reactivity to changes in the environment and system. 
    more » « less