ABSTRACT This data paper presents data obtained from E‐Defense shake‐table tests of a full‐scale, steel moment‐resisting frame (MRF) supplemented with Spines. Herein, the Spines were pin‐based columns with sufficient stiffness and strength to distribute plastic deformation evenly over the height of the MRF. The specimen was tested under two configurations: first, with the Spine rigidly connected to the MRF; second, with the Spine connected to the MRF through force‐limiting connections (FLCs). Each specimen configuration underwent earthquake simulations using ground motions with two scale factors. The tests demonstrated the expected benefits of Spines as well as the disadvantage of inducing large floor accelerations in the structure and large shear forces in the Spines. The tests also demonstrated how the FLCs can mitigate these disadvantages. This data paper reports an overview of the tests, data archive structure, and potential use of the data. The data can be used, for example, to reproduce the observations presented by the authors, to compare the dynamic response of the specimen with building specimens tested in other shake‐table test programs, to validate numerical models against the measured specimen response, or to formulate classroom exercises on system identification of linear and nonlinear systems.
more »
« less
Discussion of “An overview of the model container types in physical modeling of geotechnical problems” by Pouria Esmaeilpour, Arman Mamazizi, Gopal S.P. Madabhushi
Consistent with its title, “An overview of the model container types in physical modeling of geotechnical problems” by Esmaeilpour et al. [1], the essence of the paper is literature review, and hence it is particularly important that the review is accurate. The authors have compiled an extensive list of papers relevant to the design of model containers used to study effects of seismic loading on soil behavior in shake table tests. Of course, many more container types exist for “physical modeling of geotechnical problems” beyond shake table testing. Both the paper and this discussion are focused on containers used to contain soils during shaking table tests, whether performed at 1g or on a centrifuge. Unfortunately, we noticed inaccuracies in the way that the authors have characterized the work of others. We present examples below.
more »
« less
- Award ID(s):
- 2037883
- PAR ID:
- 10488197
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Soil Dynamics and Earthquake Engineering
- Volume:
- 175
- Issue:
- C
- ISSN:
- 0267-7261
- Page Range / eLocation ID:
- 108204
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null; null; null (Ed.)Constitutive modeling of granular materials such as sands, non-plastic silts, and gravels has been significantly advanced in the past three decades. Several new constitutive models have been proposed and calibrated to simulate the results of various laboratory element tests. Due to this progress and owing to the surge of interest in geotechnical engineering community to use well-documented constitutive models in major geotechnical projects, a more thorough evaluation of these models is necessary. Performance of the current models should be particularly evaluated in the simulation of boundary value problems where stress/strain paths are much more complex than the element tests performed in laboratory. Such validation efforts will be an important step towards the use of these models in practice. This paper presents the results of an extensive validation study aimed at assessing the capabilities and limitations of a two-surface plasticity model for sands in two selected boundary value problems, i.e. lateral spreading of mildly sloping liquefiable grounds. The results of a large number of centrifuge tests conducted during the course of four consecutive international projects known as Liquefaction Experiments and Analysis Project (LEAP) are used in this validation study. The capabilities and limitations of the two-surface plasticity model, initially calibrated against element tests, will be carefully assessed by comparing the numerical simulations with the results of the centrifuge tests from recent LEAP projects.more » « less
-
Abstract The UC San Diego large high‐performance outdoor shake table (LHPOST), which was commissioned on October 1, 2004 as a shared‐use experimental facility of the National Science Foundation (NSF) Network for Earthquake Engineering Simulation (NEES) program, was upgraded from its original one degree‐of‐freedom (LHPOST) to a six‐degree‐of‐freedom configuration (LHPOST6) between October 2019 and April 2022. A mechanics‐based numerical model of the LHPOST6 able to capture the dynamics of the upgraded 6‐DOF shake table system under bare table condition is presented in this paper. The model includes: (i) a rigid body kinematic model that relates the platen motion to the motions of the components attached to the platen, (ii) a hydraulic dynamic model that calculates the hydraulic actuator forces based on all fourth‐stage servovalve spool positions, (iii) a hold‐down strut model that determines the pull‐down forces produced by the three hold‐down struts, (iv) Bouc‐Wen models utilized to represent the dissipative forces in the shake table system, and (v) a rigid body dynamic model borrowed from robotic analysis governing the translational and rotational motions of the platen subjected to the forces from the various components attached to the platen. Extensive validation against experimental data shows excellent agreement for tri‐axial and six‐axial earthquake shake table tests. This validated model can be coupled with finite element models of test specimens to study the interaction between the shake table system and the specimens, and it offers potential for enhancing motion tracking performance through off‐line controller tuning or advanced control algorithm development.more » « less
-
This dataset contains data from E-Defense shake-table tests of a full-scale, steel moment-resisting frame (MRF) supplemented with spines. Herein, the spines were pin-based columns with sufficient stiffness and strength to distribute plastic deformation evenly over the height of the MRF. The specimen was tested under two configurations: first, with the spine rigidly connected to the MRF; and second, with the spine connected to the MRF through Force-Limiting Connections (FLCs). The two structural systems were subjected to two ground motions adjusted to two different scales. The tests highlighted the expected benefits of spines as well as their drawbacks of inducing large floor acceleration in the MRF and large shear forces in the spines themselves. The tests also highlighted how the FLCs can mitigate such drawbacks of spines. The data may be used, for example, to reproduce the observations presented by the authors, to compare the dynamic response of the specimen with building specimens tested in other shake-table test programs, to validate numerical models against the measured specimen response, or to formulate classroom exercises on system identification of linear and nonlinear systems.more » « less
-
Participated in a research project that involved multi-directional shake table preparation for future characterization testing of the rolling pendulum floor isolation system to understand its performance. This involved performing kinematics validation of the shake table to develop the actuator control system that will be used in future tests. The results of the future characterization tests will be used in the first multi-directional real-time hybrid simulation test for the rolling pendulum floor isolation system in the Lehigh University ATLSS Engineering Research Center. The efforts done contribute to the earthquake engineering community.more » « less
An official website of the United States government

