skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Steady Flow Over a Finite Patch of Submerged Flexible Vegetation
Abstract An immersed boundary‐finite element with soft‐body dynamics has been implemented to study steady flow over a finite patch of submerged flexible aquatic vegetation. The flow structure interaction model can resolve the flow interactions with flexible vegetation, and hence the reconfiguration of vegetation blades to ambient flow. Flow dynamics strongly depend on two dimensionless parameters, namely vegetation density and Cauchy number (defined as the ratio of the fluid drag force to the elastic force). Five different flow patterns have been identified based on vegetation density and Cauchy number, including the limited reach, swaying, “monami” A, “monami” B with slow moving interfacial wave, and prone. The “monami” B pattern occurred at high vegetation density and is different from “monami” A, in which the passage of Kelvin‐Helmholtz billows strongly affects the vegetation interface. With soft‐body dynamics, blade‐to‐blade interactions can also be resolved. At high vegetation density, the hydrodynamic interactions play an important role in blade‐to‐blade interactions, where adjacent vegetation blades interact via the interstitial fluid pressure. At low vegetation density, direct contacts among vegetation blades play important roles in preventing unphysical penetration of vegetation blades.  more » « less
Award ID(s):
1945685
PAR ID:
10488231
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
60
Issue:
1
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Turbulence statistics and blade deformations of flexible emergent canopies impinged by water flows were experimentally investigated across a range of Reynolds numbers Reb=Ubb/ν (where Ub is the bulk incoming flow velocity, b is the blade width, and ν is the water kinematic viscosity) and blade aspect ratios AR=h/b (h is the blade length). Time-resolved particle image velocimetry was used to characterize both the deformation of flexible blades and the surrounding flow fields. Results showed that the blade deformation increased with the growth of both Reb and AR, with higher blade bending causing stronger variations in vertical profiles of streamwise velocities and Reynolds stresses. The drag produced by the presence of flexible canopies was identified as the dominant fluid loading balancing the pressure gradient. This term exhibited distinctive reduction near the water surface region with high blade deformation due to the large local blade inclination angle. Interestingly, in contrast to fully submerged flexible blades where the flow-induced drag increases monotonously with flow speed, a critical Reynolds number Reb,cri was observed, beyond which drag decreased with increasing flow speed until the blade became fully submerged. This phenomenon was explained with theoretical interpretations, which exhibited reasonable agreement with experimental results. Further analysis of unsteady flow dynamics revealed that Reynolds stress within the canopy was dominated by ejection events due to the absence of shear layer at the top of emergent canopy. Additionally, streamwise velocity spectra indicated that flow fluctuations inside the canopy were governed by periodic vortex shedding from blade. 
    more » « less
  2. Lifting line theory describes the cumulative effect of shed vorticity from finite span lifting surfaces. In this work, the theory is reformulated to improve the accuracy of the actuator line model (ALM). This model is a computational tool used to represent lifting surfaces, such as wind-turbine blades in computational fluid dynamics. In ALM, blade segments are represented by means of a Gaussian body force distribution with a prescribed kernel size. Prior analysis has shown that a representation of the blade using an optimal kernel width $$\unicode[STIX]{x1D716}^{opt}$$ of approximately one quarter of the chord size results in accurate predictions of the velocity field and loads along the blades. Also, simulations have shown that use of the optimal kernel size yields accurate representation of the tip-vortex size and the associated downwash resulting in accurate predictions of the tip losses. In this work, we address the issue of how to represent the effects of finite span wings and tip vortices when using Gaussian body forces with a kernel size larger than the optimal value. This question is relevant in the context of coarse-scale large-eddy simulations that cannot afford the fine resolutions required to resolve the optimal kernel size. For this purpose, we present a filtered lifting line theory for a Gaussian force distribution. Based on the streamwise component of the vorticity transport equation, we develop an analytical model for the induced velocity resulting from the spanwise changes in lift force for an arbitrary kernel scale. The results are used to derive a subfilter-scale velocity model that is used to correct the velocity along the blade when using kernel sizes larger than $$\unicode[STIX]{x1D716}^{opt}$$ . Tests are performed in large-eddy simulation of flow over fixed wings with constant and elliptic chord distributions using various kernel sizes. Results show that by using the proposed subfilter velocity model, kernel-size independent predictions of lift coefficient and total lift forces agree with those obtained with the optimal kernel size. 
    more » « less
  3. Summary In this paper, a three‐dimensional numerical solver is developed for suspensions of rigid and soft particles and droplets in viscoelastic and elastoviscoplastic (EVP) fluids. The presented algorithm is designed to allow for the first time three‐dimensional simulations of inertial and turbulent EVP fluids with a large number particles and droplets. This is achieved by combining fast and highly scalable methods such as an FFT‐based pressure solver, with the evolution equation for non‐Newtonian (including EVP) stresses. In this flexible computational framework, the fluid can be modeled by either Oldroyd‐B, neo‐Hookean, FENE‐P, or Saramito EVP models, and the additional equations for the non‐Newtonian stresses are fully coupled with the flow. The rigid particles are discretized on a moving Lagrangian grid, whereas the flow equations are solved on a fixed Eulerian grid. The solid particles are represented by an immersed boundary method with a computationally efficient direct forcing method, allowing simulations of a large numbers of particles. The immersed boundary force is computed at the particle surface and then included in the momentum equations as a body force. The droplets and soft particles on the other hand are simulated in a fully Eulerian framework, the former with a level‐set method to capture the moving interface and the latter with an indicator function. The solver is first validated for various benchmark single‐phase and two‐phase EVP flow problems through comparison with data from the literature. Finally, we present new results on the dynamics of a buoyancy‐driven drop in an EVP fluid. 
    more » « less
  4. null (Ed.)
    Microorganisms may exhibit rich swimming behaviours in anisotropic fluids, such as liquid crystals, which have direction-dependent physical and rheological properties. Here we construct a two-dimensional computation model to study the undulatory swimming mechanisms of microswimmers in a solution of rigid, rodlike liquid crystal polymers. We describe the fluid phase using Doi's $$Q$$ -tensor model, and treat the swimmer as a finite-length flexible fibre with imposed propagating travelling waves on the body curvature. The fluid–structure interactions are resolved via an immersed boundary method. Compared with the swimming dynamics in Newtonian fluids, we observe non-Newtonian behaviours that feature both enhanced and retarded swimming motions in lyotropic liquid crystal polymers. We reveal the propulsion mechanism by analysing the near-body flow fields and polymeric force distributions, together with asymptotic analysis for an idealized model of Taylor's swimming sheet. 
    more » « less
  5. The sedimentary bed morphology modulated by the wake flow of a wall-mounted flexible aquatic vegetation blade across various structural aspect ratios (AR=l/b, where l and b are the length and width of the blade, respectively) and incoming flow velocities was experimentally investigated in a water channel. A surface scanner was implemented to quantify bed topography, and a tomographic particle image velocimetry system was used to characterize the three-dimensional wake flows. The results showed that due to the deflection of incoming flow, the velocity magnitude increased at the lateral sides of the blade, thereby producing distinctive symmetric scour holes in these regions. The normalized morphology profiles of the sedimentary bed, which were extracted along the streamwise direction at the location of the maximum erosion depth, exhibited a self-similar pattern that closely followed a sinusoidal wave profile. The level of velocity magnitude enhancement was highly correlated to the postures of the flexible blade. At a given flow velocity, the blade with lower aspect ratios exhibited less significant deformation, causing more significant near-bed velocity enhancement in the wake deflection zone and therefore leading to higher erosion volumes. Further investigation indicated that when the blade underwent slight deformation, the larger velocity enhancement close to the bed can be attributed to more significant flow deflection effects at the lateral sides of the blade and stronger flow mixing with high momentum flows away from the bed. Supported with measurements, a basic formula was established to quantify the shear stress acting on the sedimentary bed as a function of incoming flow velocity and blade aspect ratio. 
    more » « less