Abstract Additive manufacturing (AM) is now widely used for research and industrial production. The benchmark data for mechanical properties of additively manufactured specimens is very useful for many communities. This data article presents a tensile testing dataset of ASTM D638 size specimens without and with embedded internal geometrical features printed using polylactic acid (PLA) in a Fused Filament Fabrication (FFF) additive manufacturing process. The added features can mimic defects of various shapes and sizes. This work is a supplement to the published research articleAssisted defect detection by in-process monitoring of additive manufacturing using optical imaging and infrared thermography(Additive Manufacturing, 2023, 103483). The printed specimens were tensile tested. Stress-strain graphs were developed and used to calculate the mechanical properties such as ultimate tensile strength (UTS) and strain at UTS. The mechanical properties, the correlations between mechanical properties and size, shape and location of geometrical features (defects), and the trends in mechanical properties can be useful in benchmarking the results of other researchers.
more »
« less
Accurate additive manufacturing of lightweight and elastic carbons using plastic precursors
Abstract Despite groundbreaking advances in the additive manufacturing of polymers, metals, and ceramics, scaled and accurate production of structured carbons remains largely underdeveloped. This work reports a simple method to produce complex carbon materials with very low dimensional shrinkage from printed to carbonized state (less than 4%), using commercially available polypropylene precursors and a fused filament fabrication-based process. The control of macrostructural retention is enabled by the inclusion of fiber fillers regardless of the crosslinking degree of the polypropylene matrix, providing a significant advantage to directly control the density, porosity, and mechanical properties of 3D printed carbons. Using the same printed plastic precursors, different mechanical responses of derived carbons can be obtained, notably from stiff to highly compressible. This report harnesses the power of additive manufacturing for producing carbons with accurately controlled structure and properties, while enabling great opportunities for various applications.
more »
« less
- Award ID(s):
- 2239408
- PAR ID:
- 10488271
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The advancement of additive manufacturing has significantly transformed the production process of metal components. However, the unique challenges associated with layer-by-layer manufacturing result in anisotropy in the microstructure and uneven mechanical properties of additive-manufactured metal products. Traditional testing methods often fall short of providing the precise mechanical performance evaluations required to meet industry standards. This paper introduces an innovative approach that combines a nondestructive Lamb wave sensing system with a wavenumber analysis method to characterize the mechanical properties of 3D-printed metal panels in multiple directions. Our method employs piezoelectric actuators (PZT) to generate Lamb waves and utilizes a laser Doppler vibrometer (LDV) for non-contact, two-dimensional grid acquisition of the wavefield. The anisotropic properties of the metal 3D-printed structure will be captured in the wavefield, offering an informative dataset for wavenumber analysis. The proposed analytical method includes multi-directional frequency wavenumber analysis and a least-squares-based dispersion curves regression. The integration of the above advanced analytical tools allows for the accurate characterization of the shear wave velocity and Poisson’s ratio of the plate structure. This precise characterization is crucial for ensuring the structural integrity and consistent mechanical properties of 3D-printed metal components. We validated our method using a 3D-printed stainless-steel plate, demonstrating its capability to effectively characterize the multi-directional mechanical properties of additively manufactured metal plates. We expect that our method can provide a nondestructive, time-efficient, and comprehensive quality control solution for additive manufacturing across various industries.more » « less
-
Abstract Tailoring thermal transport by structural parameters could result in mechanically fragile and brittle networks. An indispensable goal is to design hierarchical architecture materials that combine thermal and mechanical properties in a continuous and cohesive network. A promising strategy to create such a hierarchical network targets additive manufacturing of hybrid porous voxels at nanoscale. Here we describe the convergence of agile additive manufacturing of porous hybrid voxels to tailor hierarchically and mechanically tunable objects. In one strategy, the uniformly distributed porous silica voxels, which form the basis for the control of thermal transport, are non-covalently interfaced with polymeric networks, yielding hierarchic super-elastic architectures with thermal insulation properties. Another additive strategy for achieving mechanical strength involves the versatile orthogonal surface hybridization of porous silica voxels retains its low thermal conductivity of 19.1 mW m−1 K−1, flexible compressive recovery strain (85%), and tailored mechanical strength from 71.6 kPa to 1.5 MPa. The printed lightweight high-fidelity objects promise thermal aging mitigation for lithium-ion batteries, providing a thermal management pathway using 3D printed silica objects.more » « less
-
Abstract Thermoset composites, utilized in additive manufacturing, are distinguished by their excellent thermal and mechanical properties, enabling them to maintain structural integrity even under high-temperature conditions. An accurate method for characterizing the mechanical properties is necessary to ensure the performance parameters, reliability, and safety of materials during and post-manufacturing. However, characterizing 3D-printed thermoset composites is challenging due to the anisotropy introduced by the additive manufacturing process and factors such as delamination and porosity. This also leads to difficulties in accurately characterizing composites with traditional testing methods. To address this, this paper introduces a novel method that combines a non-destructive Piezoelectric transducer-laser Doppler Vibrometer (PZT-LDV) guided wave sensing system with an optimization algorithm-enhanced wavenumber analysis technique. A series of experiments were conducted to validate the concept of measuring the mechanical properties of a 3D-printed thermoset material panel. Our method successfully determined two material properties — shear wave speed and Poisson’s ratio in multiple directions on the test panel. This study aims to establish a precise and rapid non-destructive testing method that can effectively characterize various composite materials and monitor their performance throughout the additive manufacturing process.more » « less
-
Abstract Additive manufacturing, an innovative process that assembles materials layer by layer from 3D model data, is recognized as a transformative technology across diverse industries. Researchers have extensively investigated the impact of various printing parameters of 3D printing machines, such as printing speed, nozzle temperature, and infill, on the mechanical properties of printed objects. Specifically, this study focuses on applying Finite Element Analysis (FEA) in G code modification in Fused Deposition Modeling (FDM) 3D Printing. FDM involves extruding a thermoplastic filament in layers over a build plate to create a three-dimensional object. In the realm of load-bearing structures, the Finite Element Analysis (FEA) process is initiated on the target object, employing the primary load to identify areas with high-stress concentrations. Subsequently, optimization techniques are used to strategically assign printing parameter combinations to improve mechanical properties in potentially vulnerable regions. The ultimate objective is to tailor the G code, a set of instructions for the printer, to strengthen particular areas and improve the printed object’s overall structural integrity. To evaluate the suggested methodology’s efficacy, the study conducts a comprehensive analysis of printed objects, both with and without the optimized G code. Simultaneously, mechanical testing, such as tensile testing, demonstrates quantitative data on structural performance. This comprehensive analysis aims to identify the impact of G code alteration on the finished product. Preliminary experimental results using simple tensile specimens indicate notable improvements in structural performance. Importantly, these improvements are achieved without any discernible mass increase, optimizing material usage and reducing the cost of additive manufacturing. The modified G code targets to strengthen critical areas using updated printing parameters without a net increase in the overall material consumption of the object. This finding holds significant implications for industries reliant on additive manufacturing for load-bearing components, offering a promising avenue for improved efficiency and durability. Integrating advanced techniques, such as G code modification and finite element analysis (FEA), as the additive manufacturing landscape evolves presents a pathway toward optimizing mechanical properties. By contributing valuable insights and laying the groundwork for further exploration and refinement of these methodologies, this study paves the way for enhanced structural performance in various additive manufacturing applications. Ultimately, it encourages innovation and progress in the field, propelling the industry toward new heights of efficiency and reliability.more » « less
An official website of the United States government
