skip to main content


Title: Will power be local? The role of local power organizations in energy transition acceleration
A salient problem faced by governments and industry alike is how to accelerate energy transitions to enhance affordability, accessibility, and greenhouse-gas reduction. Bringing together acceleration processes and spatial scale dynamics, this study highlights the potential for electricity distribution to play a keystone role in the energy transition. We present and examine survey data of electricity distribution utilities in a region of the U.S. to show how trends in decentralization and digitization are intertwined with decarbonization. These trends rebalance economic value toward distribution networks and away from centralized infrastructure. The survey data show that electricity distribution organizations are deploying local, renewable generation projects that produce electricity for one-third (1/3) less than the cost from a centralized generation-and-transmission entity. We suggest that this change and others are likely to transform distribution operators into more broad-based local power organizations. Although the cost advantage of distributed generation seemingly marks a future of local control and decentralized organizational forms, spatial scale dynamics indicate countervailing centralization trends, including that distribution networks may evolve to dependency on external digital, engineering, and capital providers. The outcome of the resulting conflicts will affect the potential for transition acceleration to be enabled or reduced.  more » « less
Award ID(s):
1743772
NSF-PAR ID:
10488284
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Technological Forecasting and Social Change
Volume:
183
Issue:
C
ISSN:
0040-1625
Page Range / eLocation ID:
121884
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wave energy has been studied and explored because of its enormous potential to supply electricity for human activities. However, the uncertainty of its spatial and temporal variations increases the difficulty of harvesting wave energy commercially. There are no large-scale wave converters in commercial operation yet. A thorough understanding of wave energy dynamic behaviors will definitely contribute to the acceleration of wave energy harvesting. In this paper, about 40 years of meteorological data from the Gulf of Mexico were obtained, visualized, and analyzed to reveal the wave power density hotspot distribution pattern, and its correlation with ocean surface water temperatures and salinities. The collected geospatial data were first visualized in MATLAB. The visualized data were analyzed using the deep learning method to identify the wave power density hotspots in the Gulf of Mexico. By adjusting the temporal and spatial resolutions of the different datasets, the correlations between the number of hotspots and their strength levels and the surface temperatures and salinities are revealed. The R value of the correlation between the wave power density hotspots and the salinity changes from −0.371 to −0.885 in a negative direction, and from 0.219 to 0.771 in a positive direction. For the sea surface temperatures, the R values range from −0.474 to 0.393. Certain areas within the Gulf of Mexico show relatively strong correlations, which may be useful for predicting the wave energy behavior and change patterns. 
    more » « less
  2. null (Ed.)
    Electrification of vehicles is becoming one of the main avenues for decarbonization of the transportation market. To reduce stress on the energy grid, large-scale charging will require optimal scheduling of when electricity is delivered to vehicles. Coordinated electric-vehicle charging can produce optimal, flattened loads that would improve reliability of the power system as well as reduce system costs and emissions. However, a challenge for successful introduction of coordinated deadline-scheduling of residential charging comes from the demand side: customers would need to be willing both to defer charging their vehicles and to accept less than a 100% target for battery charge. Within a coordinated electric-vehicle charging pilot run by the local utility in upstate New York, this study analyzes the necessary incentives for customers to accept giving up control of when charging of their vehicles takes place. Using data from a choice experiment implemented in an online survey of electric-vehicle owners and lessees in upstate New York (N=462), we make inference on the willingness to pay for features of hypothetical coordinated electric-vehicle charging programs. To address unobserved preference heterogeneity, we apply Variational Bayes (VB) inference to a mixed logit model. Stochastic variational inference has recently emerged as a fast and computationally-efficient alternative to Markov chain Monte Carlo (MCMC) methods for scalable Bayesian estimation of discrete choice models. Our results show that individuals negatively perceive the duration of the timeframe in which the energy provider would be allowed to defer charging, even though both the desired target for battery charge and deadline would be respected. This negative monetary valuation is evidenced by an expected average reduction in the annual fee of joining the charging program of $2.64 per hour of control yielded to the energy provider. Our results also provide evidence of substantial heterogeneity in preferences. For example, the 25% quantile of the posterior distribution of the mean of the willingness to accept an additional hour of control yielded to the utility is $5.16. However, the negative valuation of the timeframe for deferring charging is compensated by positive valuation of emission savings coming from switching charging to periods of the day with a higher proportion of generation from renewable sources. Customers also positively valued discounts in the price of energy delivery. 
    more » « less
  3. null (Ed.)
    Context. Inferences about dark matter, dark energy, and the missing baryons all depend on the accuracy of our model of large-scale structure evolution. In particular, with cosmological simulations in our model of the Universe, we trace the growth of structure, and visualize the build-up of bigger structures from smaller ones and of gaseous filaments connecting galaxy clusters. Aims. Here we aim to reveal the complexity of the large-scale structure assembly process in great detail and on scales from tens of kiloparsecs up to more than 10 Mpc with new sensitive large-scale observations from the latest generation of instruments. We also aim to compare our findings with expectations from our cosmological model. Methods. We used dedicated SRG/eROSITA performance verification (PV) X-ray, ASKAP/EMU Early Science radio, and DECam optical observations of a ~15 deg 2 region around the nearby interacting galaxy cluster system A3391/95 to study the warm-hot gas in cluster outskirts and filaments, the surrounding large-scale structure and its formation process, the morphological complexity in the inner parts of the clusters, and the (re-)acceleration of plasma. We also used complementary Sunyaev-Zeldovich (SZ) effect data from the Planck survey and custom-made Galactic total (neutral plus molecular) hydrogen column density maps based on the HI4PI and IRAS surveys. We relate the observations to expectations from cosmological hydrodynamic simulations from the Magneticum suite. Results. We trace the irregular morphology of warm and hot gas of the main clusters from their centers out to well beyond their characteristic radii, r 200 . Between the two main cluster systems, we observe an emission bridge on large scale and with good spatial resolution. This bridge includes a known galaxy group but this can only partially explain the emission. Most gas in the bridge appears hot, but thanks to eROSITA’s unique soft response and large field of view, we discover some tantalizing hints for warm, truly primordial filamentary gas connecting the clusters. Several matter clumps physically surrounding the system are detected. For the “Northern Clump,” we provide evidence that it is falling towards A3391 from the X-ray hot gas morphology and radio lobe structure of its central AGN. Moreover, the shapes of these X-ray and radio structures appear to be formed by gas well beyond the virial radius, r 100 , of A3391, thereby providing an indirect way of probing the gas in this elusive environment. Many of the extended sources in the field detected by eROSITA are also known clusters or new clusters in the background, including a known SZ cluster at redshift z = 1. We find roughly an order of magnitude more cluster candidates than the SPT and ACT surveys together in the same area. We discover an emission filament north of the virial radius of A3391 connecting to the Northern Clump. Furthermore, the absorption-corrected eROSITA surface brightness map shows that this emission filament extends south of A3395 and beyond an extended X-ray-emitting object (the “Little Southern Clump”) towards another galaxy cluster, all at the same redshift. The total projected length of this continuous warm-hot emission filament is 15 Mpc, running almost 4 degrees across the entire eROSITA PV observation field. The Northern and Southern Filament are each detected at >4 σ . The Planck SZ map additionally appears to support the presence of both new filaments. Furthermore, the DECam galaxy density map shows galaxy overdensities in the same regions. Overall, the new datasets provide impressive confirmation of the theoretically expected structure formation processes on the individual system level, including the surrounding warm-hot intergalactic medium distribution; the similarities of features found in a similar system in the Magneticum simulation are striking. Our spatially resolved findings show that baryons indeed reside in large-scale warm-hot gas filaments with a clumpy structure. 
    more » « less
  4. null (Ed.)
    Hydropower is the largest renewable energy source for electricity generation in the world, with numerous benefits in terms of: environment protection (near-zero air pollution and climate impact), cost-effectiveness (long-term use, without significant impacts of market fluctuation), and reliability (quickly respond to surge in demand). However, the effectiveness of hydropower plants is affected by multiple factors such as reservoir capacity, rainfall, temperature and fluctuating electricity demand, and particularly their complicated relationships, which make the prediction/recommendation of station operational output a difficult challenge. In this paper, we present DeepHydro, a novel stochastic method for modeling multivariate time series (e.g., water inflow/outflow and temperature) and forecasting power generation of hydropower stations. DeepHydro captures temporal dependencies in co-evolving time series with a new conditioned latent recurrent neural networks, which not only considers the hidden states of observations but also preserves the uncertainty of latent variables. We introduce a generative network parameterized on a continuous normalizing flow to approximate the complex posterior distribution of multivariate time series data, and further use neural ordinary differential equations to estimate the continuous-time dynamics of the latent variables constituting the observable data. This allows our model to deal with the discrete observations in the context of continuous dynamic systems, while being robust to the noise. We conduct extensive experiments on real-world datasets from a large power generation company consisting of cascade hydropower stations. The experimental results demonstrate that the proposed method can effectively predict the power production and significantly outperform the possible candidate baseline approaches. 
    more » « less
  5. Abstract

    Affordable housing that incorporates sustainability goals into its design has the potential to address both health and economic disparities via enhanced energy‐efficiency, structural durability and indoor environmental quality. Despite the potential for these win‐win advances, survey data of U.S. local governments indicate these types of equity investments remain rare. This study explores barriers and pathways to distributional equity via energy‐efficient housing. Using archival city sustainability survey data collected during a period of heightened U.S. federal investment in local government energy‐efficiency programs, we combine machine learning (ML) and process‐tracing approaches for modeling the complex drivers and barriers underlying these decisions. First, we ask, how do characteristics of a city's organizational learning methods—its administrative structure, past experience with housing programs, resources, stakeholder engagement and planning—predict policy commitments to green affordable housing? Using ensemble ML methods, we find that three specific modes of organizational learning—past experience with affordable housing programs, seeking assistance from neighborhood groups and the technical expertise of professional green organizations—are the most impactful features in determining city commitments to constructing green affordable housing. Our second stage uses process‐tracing within a specific case identified by the ML models to determine the ordering of these factors and to provide more nuance on green‐housing policy implementation.

     
    more » « less