This work discusses an optimization framework to embed dictionary learning frameworks with the wave equation as a strategy for incorporating prior scientific knowledge into a machine learning algorithm. We modify dictionary learning to study ultrasonic guided wave-based defect detection for non-destructive structural health monitoring systems. Specifically, this work involves altering the popular-SVD algorithm for dictionary learning by enforcing prior knowledge about the ultrasonic guided wave problem through a physics-based regularization derived from the wave equation. We confer it the name “wave-informed K-SVD.” Training dictionary on data simulated from a fixed string added with noise using both K-SVD and wave-informed K-SVD, we show an improved physical consistency of columns of dictionary matrix with the known modal behavior of different one-dimensional wave simulations is observed.
more »
« less
Wave Physics-Informed Matrix Factorizations
With the recent success of representation learning methods, which includes deep learning as a special case, there has been considerable interest in developing techniques that incorporate known physical constraints into the learned representation. As one example, in many applications that involve a signal propagating through physical media (e.g., optics, acoustics, fluid dynamics, etc.), it is known that the dynamics of the signal must satisfy constraints imposed by the wave equation. Here we propose a matrix factorization technique that decomposes such signals into a sum of components, where each component is regularized to ensure that it nearly satisfies wave equation constraints. Although our proposed formulation is non-convex, we prove that our model can be efficiently solved to global optimality. Through this line of work we establish theoretical connections between wave-informed learning and filtering theory in signal processing. We further demonstrate the application of this work on modal analysis problems commonly arising in structural diagnostics and prognostics.
more »
« less
- Award ID(s):
- 1747783
- PAR ID:
- 10488296
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Signal Processing
- Volume:
- 72
- ISSN:
- 1053-587X
- Page Range / eLocation ID:
- 535 to 548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We extend the learning from demonstration paradigm by providing a method for learning unknown constraints shared across tasks, using demonstrations of the tasks, their cost functions, and knowledge of the system dynamics and control constraints. Given safe demonstrations, our method uses hit-and-run sampling to obtain lower cost, and thus unsafe, trajectories. Both safe and unsafe trajectories are used to obtain a consistent representation of the unsafe set via solving an integer program. Our method generalizes across system dynamics and learns a guaranteed subset of the constraint. In addition, by leveraging a known parameterization of the constraint, we modify our method to learn parametric constraints in high dimensions. We also provide theoretical analysis on what subset of the constraint and safe set can be learnable from safe demonstrations. We demonstrate our method on linear and nonlinear system dynamics, show that it can be modified to work with suboptimal demonstrations, and that it can also be used to learn constraints in a feature space.more » « less
-
"Important physical observations in rupture dynamics such as static fault friction, short-slip, self-healing, and supershear phenomenon in cracks are studied. A continuum model of rupture dynamics is developed using the field dislocation mechanics (FDM) theory. The energy density function in our model encodes accepted and simple physical facts related to rocks and granular materials under compression. We work within a 2-dimensional ansatz of FDM where the rupture front is allowed to move only in a horizontal fault layer sandwiched between elastic blocks. Damage via the degradation of elastic modulus is allowed to occur only in the fault layer, characterized by the amount of plastic slip. The theory dictates the evolution equation of the plastic shear strain to be a Hamilton-Jacobi (H-J) equation, resulting in the representation of a propagating rupture front. A Central-Upwind scheme is used to solve the H-J equation. The rupture propagation is fully coupled to elastodynamics in the whole domain, and our simulations recover static friction laws as emergent features of our continuum model, without putting in by hand any such discontinuous criteria in our model. Estimates of material parameters of cohesion and friction angle are deduced. Short-slip and slip-weakening (crack-like) behaviors are also reproduced as a function of the degree of damage behind the rupture front. The long-time behavior of a moving rupture front is probed, and it is deduced that the equilibrium profiles under no shear stress are not traveling wave profiles under non-zero shear load in our model. However, it is shown that a traveling wave structure is likely attained in the limit of long times. Finally, a crack-like damage front is driven by an initial impact loading, and it is observed in our numerical simulations that an upper bound to the crack speed is the dilatational wave speed of the material unless the material is put under pre-stressed conditions, in which case supersonic motion can be obtained. Without pre-stress, intersonic (supershear) motion is recovered under appropriate conditions."more » « less
-
Abstract Wave dynamics reflect a broad spectrum of natural phenomena and are often characterized by wave equation such as in the development of meta-devices used to steer wave propagation. Modeling synchronization of wave dynamics is critical in various applications such as in communications and neuroscience. In this paper, we study the synchronization problem for oscillations governed by wave equation with nonlinear (van der Pol type) boundary conditions through a single boundary coupling. The dynamics of the master system is self-excited and presents sensitive and rapid oscillations. With the only signal received at one end of the boundary, by constructing a mathematical model, we show the existence of a slave system that can be synchronized with the master system via the study of wave reflections on the boundary to recover the actual wave dynamics. The coupling gain, which represents the strength of the connection between the master system and the slave system, has been identified. The obtained result can be also viewed as an observer construction when the measurable output is only on the boundary. Numerical simulations are provided to demonstrate the effectiveness of the theoretical outcomes.more » « less
-
Abstract The technologies used in the manipulation of light can be used to do analogue simulations of physical systems with wave-like equations of motion. This analogy is maximized by the use of all the degrees of freedom of light. The Helmholtz equation in physical optics and the Schodinger equation in quantum mechanics share the same mathematical form. We use this connection to prepare non-diffracting optical beams representing the spatial and temporal dynamics of a nonlinear physical system: the quantum pendulum. By using the propagation coordinate to represent time in the quantum problem, we are able to analogue-simulate quantum wavepacket dynamics. These manifest themselves in novel optical beams with rich three-dimensional structures, such as rotation and sloshing of the light's intensity as it propagates. Our experimental results agree very well with the predictions from quantum theory, thus demonstrating that our system can be used as a platform to simulate the quantum pendulum dynamics. This three-dimensional light-sculpting capability has the potential to impact fields such as manipulation with light and imaging.more » « less
An official website of the United States government

