The Multiple Institution Database for Investigating Engineering Longitudinal Development (MIDFIELD) has been developed over many years with substantial investment by the National Science Foundation through Engineering Education and Centers in the Engineering Directorate and the Division of Undergraduate Education in the Education and Human Resources Directorate. This project is focused on transitioning MIDFIELD to the American Society for Engineering Education (ASEE). The current team of MIDFIELD researchers continues to support this project including helping others learn to use the database. We have developed detailed tutorials in R that introduce MIDFIELD, key metrics, and example scenarios. We have also designed and facilitated workshops. In year 2, we offered the MIDFIELD Institute, an online three-day workshop to help researchers learn about and use MIDFIELD effectively. Attendees included graduate students, early career faculty, senior faculty, and an NSF program officer. Results from the 2023 offering of the MIDFIELD Institute are described in this paper. Dissemination and products are also summarized.
more »
« less
Sustaining and Scaling the impact of the MIDFIELD project at the American Society for Engineering Education (Year 1)
A substantial investment by the National Science Foundation (NSF), including awards from Engineering Education and Centers in the Engineering Directorate and the Division of Undergraduate Education in the Education and Human Resources Directorate, has led to the creation and study of the Multiple Institution Database for Investigating Engineering Longitudinal Development (MIDFIELD). This large database of student records has yielded groundbreaking research on student pathways by a small interdisciplinary team of researchers. The team has shown that while individual engineering programs may have poor graduation rates, a multi-institutional view reveals that engineering programs as a whole graduate a larger fraction of students than other groups of disciplines. The team has also shown that women and men have similar graduation rates in engineering, likely a result of efforts to make engineering education a welcoming environment for women and the high academic credentials of the women who do study engineering. As with the overall graduation rate, individual institutions and programs can and do have outcomes that depart from this aggregate perspective. A comprehensive study of student pathways in various engineering disciplines provided practitioners with rich information specific to their disciplinary context. The team has also designed a variety of metrics that have provided researchers and practitioners with an improved understanding of student pathways. The quality of the data source and the research team is attested by these substantial findings, multiple best paper awards, and other recognitions. This paper provides updates on transitioning MIDFIELD to the American Society for Engineering Education (ASEE), documentation of institutional policies, and supporting a growing community of researchers in using the database including the second offering of the MIDFIELD Institute. This work is supported by the NSF Division of Engineering Education and Centers.
more »
« less
- Award ID(s):
- 2142087
- PAR ID:
- 10488310
- Publisher / Repository:
- ASEE
- Date Published:
- Journal Name:
- ASEE annual conference proceedings
- ISSN:
- 1524-4857
- Format(s):
- Medium: X
- Location:
- Baltimore, MD
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This research category full paper explores National Science Foundation (NSF) Faculty Early Career Development (CAREER) Program awardees from the Division of Engineering Education and Centers. The NSF CAREER Award distinguishes researchers as promising future leaders who are advancing the frontier of engineering education research (EER). Additionally, the multidisciplinary rise of EER has resulted in a diverse community of researchers from many backgrounds and academic departments. Given the recognition associated with the CAREER award, it is crucial that all early career faculty members possess the knowledge and support to create high quality CAREER applications. In this study, we investigated the educational backgrounds, institutional affiliation, and public abstracts of CAREER awardees to document prevailing patterns in recognition through CAREER awards. This knowledge informs future work to provide additional support for early career faculty planning on applying to the program.more » « less
-
Our transformative mixed-methods project, funded by the Division of Engineering Education and Centers, responds to calls for more cross-institutional qualitative and longitudinal studies of minorities in engineering education. Our project builds on prior work that demonstrated the impacts of gender and race on academic trajectories in Electrical, Computer, and Mechanical Engineering (EE, CpE, and ME, respectively) to answer the following questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what ways do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? In Year 4 of our project, the research team has engaged in deeper analysis of our quantitative data from the Multi-Institution Database for Investigating Engineering Longitudinal Development (MIDFIELD) database and our qualitative data from 79 in-depth interviews of students in the three study majors at our four study institutions. Expanding on findings presented in prior years, in this paper, we describe emergent results from three papers from Year 4 of our project: • Paper # 1: “Who Tells Your Story? Qualitative Methods for Establishing Connections and Eliciting Narratives” was published in the International Journal of Qualitative Methodology in 2021. It includes a description of the development of the card-sorting activity that students completed to describe their reasons for choosing to major in engineering and an exploration of different ways to analyze the data. Analysis of how frequently the factors influencing the major choice were chosen by interviewees has allowed us to identify those factors that carry the greatest importance for students and how they vary for persisters and switchers. • Paper # 2: “GPA Trends of Black Mechanical Engineering Students”: Our early qualitative work has led to questions about students who switch majors and those who leave the university. We are using the MIDFIELD database to better understand characteristics of students who switch majors and who leave the university. We will use functional cluster analysis to group the GPA trends to find clearly defined groups of students' GPA. Preliminary findings suggest that the students who switch majors have different GPA trends than the students who leave their institutions. This holds true for whether the student chooses to switch their major and stay within engineering and students who choose to leave engineering. • Paper # 3: “Pride and Prestige: Factors Influencing How and Why Black Students Choose to Attend a Predominantly White Institution or a Historically Black University”: In this paper, we explore the reasons that students in our study majors decided to attend either a HBCU or a PWI. Our early analysis revealed that students had diverse reasons for college choice, including affordability, location, familiarity with the institution, family encouragement and connections, and prestige of the university. Our paper will also describe the differences between students who attended a HBCU or PWI in their rationale for deciding to attend a particular university.more » « less
-
null (Ed.)Research Experience for Teachers (RET) programs are National Science Foundation (NSF) funded programs designed to provide K- 12 Science, Technology, Engineering, and Mathematics (STEM) teachers with immersive, hands-on research experiences at Universities around the country. The NSF RET in nanotechnology encourages teachers to translate cutting-edge research into culturally relevant Project-Based Learning (PjBL) and engineering curriculum. Traditionally, the evaluation of RET programs focuses on the growth and development of teacher self-efficacy, engineering content knowledge gains, or classroom implementation of developed curriculum materials. However, reported methods for evaluating the impact of RETs on their female, minority student populations' high school graduation and undergraduate STEM major rates are limited. This study's objective was to compare RET high school student graduation rates and undergraduate STEM major rates across gender, race, and ethnicity to a comparison sample to determine the RET program's long-term impact on students' likelihood of pursuing STEM careers. The approach of collecting and analyzing the Texas Education Research Center Database (EdRC) data is a novel methodology for assessing RET programs' effectiveness on students. The EdRC is a repository of K-12 student data from the Texas Education Agency (TEA) and Higher Education data from the Texas Higher Education Coordinating Board (THECB). This joint database contains demographic, course registration, graduation, standardized testing, and college major, among others, for all students that attended a K-12 public school in Texas and any college in Texas, public or private. The RET program participants at Rice University (2010 – 2018) taught numerous students, a sample size of 11,240 students. A propensity score matching generated the student comparison group within the database. Students' school campus, gender, race/ethnic status, and English proficiency status were applied to produce a graduation comparison sample size of 11,240 students of Non-RET participants. Linking the TEA database to the THECB database resulted in college STEM participants and comparison sample sizes of 4,029 students. The project team conducted a logistic regression using RET status to predict high school graduation rates as a whole and by individual variables: gender, Asian American, Black, Caucasian, and Latinx students. All models were significant at p less than 0.05, with models in favor of students RET teachers. The project team conducted a logistic regression using RET status to predict student STEM undergraduate major rates as a whole and by individual variables: Gender, Asian American, Black, Caucasian, and Latinx students. African American and Caucasian models were significant at p less than 0.05; Gender, Asian American, and Latinx models were marginally significant (0.05 less than p greater than 0.1), where RET students had higher STEM major rates than matched controls. The findings demonstrate that RET programs have a long-term positive impact on the students' high school graduation rates and undergraduate STEM major rates. As teachers who participate in the RET programs are more likely to conduct courses using PjBL strategies and incorporate real-world engineering practices, female and minority students are more likely to benefit from these practices and seek careers utilizing these skills.more » « less
-
Carnegie Mellon University, Johns Hopkins University, and New York University created the Project Equity-focused Launch to Empower and Value AGEP Faculty to Thrive in Engineering (ELEVATE) Alliance (National Science Foundation Awards #2149995, #2149798 #2149899 from the Division of Equity for Excellence in STEM in the Directorate for STEM Education) to develop a model to promote the equitable advancement of early career tenure-track engineering faculty from populations of interest to the Alliances for Graduate Education and the Professoriate (AGEP) program. The goal of this AGEP Faculty Career Pathways Alliance Model (FCPAM) is to develop, implement, self-study, and institutionalize a career pathway model that can be adapted for use at other similar institutions for advancing early career engineering faculty who are: African Americans, Hispanic Americans, American Indians, Alaska Natives, Native Hawaiians, and Native Pacific Islanders. This NSF AGEP FCPAM will provide a framework for institutional change at private, highly selective research institutions that will enable all faculty to be members of a collaborative community. Improving the experience of these faculty can lead to increased diversity in the engineering faculty and ultimately result in graduating more engineering students from diverse populations and increasing diversity in the engineering workforce. The Alliance interventions will focus on three major areas, 1) equity-focused institutional change designed to make structural changes that support the advancement of AGEP faculty, 2) identity-affirming mentorship that acknowledges and provides professional support to AGEP faculty holistically, recognizing all parts of their identity and 3) inclusive professional development that equips all engineering faculty and institutional leaders with skills to implement inclusive practices and equips AGEP faculty for career advancement. In this paper, we will discuss the process of creating a leadership team to address these focus areas and assess the processes and procedures that currently exist at the three institutions as we begin to institutionalize these change efforts. We provide an overview of the project and efforts to date. We will also present our process for engaging in our initial self-study evaluation and next steps.more » « less
An official website of the United States government
