skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Generalizations of Matrix Multiplication can solve the Light Bulb Problem
In the light bulb problem, one is given uniformly random vectors x1,…,xn,y1,…,yn∈{−1,1}d. They are all chosen independently except a planted pair (xi∗,yj∗) is chosen with correlation ρ>0. The goal is to find the planted pair. This problem was introduced over 30 years ago by L.~Valiant, and is known to have many applications in data analysis, statistics, and learning theory. The naive algorithm runs in Ω(n2) time, and algorithms based on Locality-Sensitive Hashing approach quadratic time as ρ→0. In 2012, G.~Valiant gave a breakthrough algorithm using fast matrix multiplication that runs in time O(n(5−ω)/(4−ω))0 is. This was subsequently refined by Karppa, Kaski, and Kohonen in 2016 to O(n2ω/3)0. We also introduce a new tensor T2112, which has the same size of 2×2 matrix multiplication tensor, but runs faster than the Strassen's algorithm for light bulb problem.  more » « less
Award ID(s):
2238221
PAR ID:
10488393
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)
ISBN:
979-8-3503-1894-4
Page Range / eLocation ID:
1471 to 1495
Format(s):
Medium: X
Location:
Santa Cruz, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Kumar, Amit; Ron-Zewi, Noga (Ed.)
    We study the Matrix Multiplication Verification Problem (MMV) where the goal is, given three n × n matrices A, B, and C as input, to decide whether AB = C. A classic randomized algorithm by Freivalds (MFCS, 1979) solves MMV in Õ(n²) time, and a longstanding challenge is to (partially) derandomize it while still running in faster than matrix multiplication time (i.e., in o(n^ω) time). To that end, we give two algorithms for MMV in the case where AB - C is sparse. Specifically, when AB - C has at most O(n^δ) non-zero entries for a constant 0 ≤ δ < 2, we give (1) a deterministic O(n^(ω-ε))-time algorithm for constant ε = ε(δ) > 0, and (2) a randomized Õ(n²)-time algorithm using δ/2 ⋅ log₂ n + O(1) random bits. The former algorithm is faster than the deterministic algorithm of Künnemann (ESA, 2018) when δ ≥ 1.056, and the latter algorithm uses fewer random bits than the algorithm of Kimbrel and Sinha (IPL, 1993), which runs in the same time and uses log₂ n + O(1) random bits (in turn fewer than Freivalds’s algorithm). Our algorithms are simple and use techniques from coding theory. Let H be a parity-check matrix of a Maximum Distance Separable (MDS) code, and let G = (I | G') be a generator matrix of a (possibly different) MDS code in systematic form. Our deterministic algorithm uses fast rectangular matrix multiplication to check whether HAB = HC and H(AB)^T = H(C^T), and our randomized algorithm samples a uniformly random row g' from G' and checks whether g'AB = g'C and g'(AB)^T = g'C^T. We additionally study the complexity of MMV. We first show that all algorithms in a natural class of deterministic linear algebraic algorithms for MMV (including ours) require Ω(n^ω) time. We also show a barrier to proving a super-quadratic running time lower bound for matrix multiplication (and hence MMV) under the Strong Exponential Time Hypothesis (SETH). Finally, we study relationships between natural variants and special cases of MMV (with respect to deterministic Õ(n²)-time reductions). 
    more » « less
  2. We study the problem of estimating the covariance matrix of a high-dimensional distribution when a small constant fraction of the samples can be arbitrarily corrupted. Recent work gave the first polynomial time algorithms for this problem with near-optimal error guarantees for several natural structured distributions. Our main contribution is to develop faster algorithms for this problem whose running time nearly matches that of computing the empirical covariance. Given N = Ω(d^2/\eps^2) samples from a d-dimensional Gaussian distribution, an \eps-fraction of which may be arbitrarily corrupted, our algorithm runs in time O(d^{3.26}/ poly(\eps)) and approximates the unknown covariance matrix to optimal error up to a logarithmic factor. Previous robust algorithms with comparable error guarantees all have runtimes Ω(d^{2ω}) when \eps = Ω(1), where ω is the exponent of matrix multiplication. We also provide evidence that improving the running time of our algorithm may require new algorithmic techniques. 
    more » « less
  3. null (Ed.)
    Graphs model real-world circumstances in many applications where they may constantly change to capture the dynamic behavior of the phenomena. Topological persistence which provides a set of birth and death pairs for the topological features is one instrument for analyzing such changing graph data. However, standard persistent homology defined over a growing space cannot always capture such a dynamic process unless shrinking with deletions is also allowed. Hence, zigzag persistence which incorporates both insertions and deletions of simplices is more appropriate in such a setting. Unlike standard persistence which admits nearly linear-time algorithms for graphs, such results for the zigzag version improving the general O(m^ω) time complexity are not known, where ω < 2.37286 is the matrix multiplication exponent. In this paper, we propose algorithms for zigzag persistence on graphs which run in near-linear time. Specifically, given a filtration with m additions and deletions on a graph with n vertices and edges, the algorithm for 0-dimension runs in O(mlog² n+mlog m) time and the algorithm for 1-dimension runs in O(mlog⁴ n) time. The algorithm for 0-dimension draws upon another algorithm designed originally for pairing critical points of Morse functions on 2-manifolds. The algorithm for 1-dimension pairs a negative edge with the earliest positive edge so that a 1-cycle containing both edges resides in all intermediate graphs. Both algorithms achieve the claimed time complexity via dynamic graph data structures proposed by Holm et al. In the end, using Alexander duality, we extend the algorithm for 0-dimension to compute the (p-1)-dimensional zigzag persistence for ℝ^p-embedded complexes in O(mlog² n+mlog m+nlog n) time. 
    more » « less
  4. null (Ed.)
    For any finite group G, we give an arithmetic algorithm to compute generalized Discrete Fourier Transforms (DFTs) with respect to G, using O(|G|^{ω/2+ε}) operations, for any ε > 0. Here, ω is the exponent of matrix multiplication. 
    more » « less
  5. The maximum bipartite matching problem is among the most fundamental and well-studied problems in combinatorial optimization. A beautiful and celebrated combinatorial algorithm of Hopcroft and Karp [26] shows that maximum bipartite matching can be solved in O(m√n) time on a graph with n vertices and m edges. For the case of very dense graphs, a different approach based on fast matrix multiplication was subsequently developed [27, 39], that achieves a running time of O(n2.371). For the next several decades, these results represented the fastest known algorithms for the problem until in 2013, a ground-breaking work of Madry [36] gave a significantly faster algorithm for sparse graphs. Subsequently, a sequence of works developed increasingly faster algorithms for solving maximum bipartite matching, and more generally directed maximum flow, culminating in a spectacular recent breakthrough [9] that gives an m1+o(1) time algorithm for maximum bipartite matching (and more generally, for min cost flows). These more recent developments collectively represented a departure from earlier combinatorial approaches: they all utilized continuous techniques based on interior-point methods for solving linear programs. This raises a natural question: are continuous techniques essential to obtaining fast algorithms for the bipartite matching problem? Our work makes progress on this question by presenting a new, purely combinatorial algorithm for bipartite matching, that, on moderately dense graphs outperforms both Hopcroft- Karp and the fast matrix multiplication based algorithms. Similar to the classical algorithms for bipartite matching, our approach is based on iteratively augmenting a current matching using augmenting paths in the (directed) residual flow network. A common method for designing fast algorithms for directed flow problems is via the multiplicative weights update (MWU) framework, that effectively reduces the flow problem to decremental single-source shortest paths (SSSP) in directed graphs. Our main observation is that a slight modification of this reduction results in a special case of SSSP that appears significantly easier than general decremental directed SSSP. Our main technical contribution is an efficient algorithm for this special case of SSSP, that outperforms the current state of the art algorithms for general decremental SSSP with adaptive adversary, leading to a deterministic algorithm for bipartite matching, whose running time is Õ(m1/3n5/3). This new algorithm thus starts to outperform the Hopcroft-Karp algorithm in graphs with m = ω(n7/4), and it also outperforms the fast matrix multiplication based algorithms on dense graphs. We believe that this framework for obtaining faster combinatorial algorithms for bipartite matching by exploiting the special properties of the resulting decremental SSSP instances is one of the main conceptual contributions of our work that we hope paves the way for even faster combinatorial algorithms for bipartite matching. Finally, using a standard reduction from the maximum vertex-capacitated s-t flow problem in directed graphs to maximum bipartite matching, we also obtain an O(m1/3n5/3) time deterministic algorithm for maximum vertex-capacitated s-t flow when all vertex capacities are identical. 
    more » « less