skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2238221

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Guruswami, Venkatesan (Ed.)
    Generalizing work of Künnemann, Paturi, and Schneider [ICALP 2017], we study a wide class of high-dimensional dynamic programming (DP) problems in which one must find the shortest path between two points in a high-dimensional grid given a tensor of transition costs between nodes in the grid. This captures many classical problems which are solved using DP such as the knapsack problem, the airplane refueling problem, and the minimal-weight polygon triangulation problem. We observe that for many of these problems, the tensor naturally has low tensor rank or low slice rank. We then give new algorithms and a web of fine-grained reductions to tightly determine the complexity of these problems. For instance, we show that a polynomial speedup over the DP algorithm is possible when the tensor rank is a constant or the slice rank is 1, but that such a speedup is impossible if the tensor rank is slightly super-constant (assuming SETH) or the slice rank is at least 3 (assuming the APSP conjecture). We find that this characterizes the known complexities for many of these problems, and in some cases leads to new faster algorithms. 
    more » « less
  2. In the light bulb problem, one is given uniformly random vectors x1,…,xn,y1,…,yn∈{−1,1}d. They are all chosen independently except a planted pair (xi∗,yj∗) is chosen with correlation ρ>0. The goal is to find the planted pair. This problem was introduced over 30 years ago by L.~Valiant, and is known to have many applications in data analysis, statistics, and learning theory. The naive algorithm runs in Ω(n2) time, and algorithms based on Locality-Sensitive Hashing approach quadratic time as ρ→0. In 2012, G.~Valiant gave a breakthrough algorithm using fast matrix multiplication that runs in time O(n(5−ω)/(4−ω))0 is. This was subsequently refined by Karppa, Kaski, and Kohonen in 2016 to O(n2ω/3)0. We also introduce a new tensor T2112, which has the same size of 2×2 matrix multiplication tensor, but runs faster than the Strassen's algorithm for light bulb problem. 
    more » « less
  3. Ta-Shma, Amnon (Ed.)
    Three-player Number On the Forehead communication may be thought of as a three-player Number In the Hand promise model, in which each player is given the inputs that are supposedly on the other two players' heads, and promised that they are consistent with the inputs of the other players. The set of all allowed inputs under this promise may be thought of as an order-3 tensor. We surprisingly observe that this tensor is exactly the matrix multiplication tensor, which is widely studied in the design of fast matrix multiplication algorithms. Using this connection, we prove a number of results about both Number On the Forehead communication and matrix multiplication, each by using known results or techniques about the other. For example, we show how the Laser method, a key technique used to design the best matrix multiplication algorithms, can also be used to design communication protocols for a variety of problems. We also show how known lower bounds for Number On the Forehead communication can be used to bound properties of the matrix multiplication tensor such as its zeroing out subrank. Finally, we substantially generalize known methods based on slice-rank for studying communication, and show how they directly relate to the matrix multiplication exponent ω. 
    more » « less
  4. We give algorithms with lower arithmetic operation counts for both the Walsh-Hadamard Transform (WHT) and the Discrete Fourier Transform (DFT) on inputs of power-of-2 size N. For the WHT, our new algorithm has an operation count of 23/24N logN + O(N). To our knowledge, this gives the first improvement on the N logN operation count of the simple, folklore Fast Walsh-Hadamard Transform algorithm. For the DFT, our new FFT algorithm uses 15/4N logN + O(N) real arithmetic operations. Our leading constant 15/4 = 3.75 improves on the leading constant of 5 from the Cooley-Tukey algorithm from 1965, leading constant 4 from the split-radix algorithm of Yavne from 1968, leading constant 34/9=3.7777 from a modification of the split-radix algorithm by Van Buskirk from 2004, and leading constant 3.76875 from a theoretically optimized version of Van Buskirk’s algorithm by Sergeev from 2017. Our new WHT algorithm takes advantage of a recent line of work on the non-rigidity of the WHT: we decompose the WHT matrix as the sum of a low-rank matrix and a sparse matrix, and then analyze the structures of these matrices to achieve a lower operation count. Our new DFT algorithm comes from a novel reduction, showing that parts of the previous best FFT algorithms can be replaced by calls to an algorithm for the WHT. Replacing the folklore WHT algorithm with our new improved algorithm leads to our improved FFT. 
    more » « less