skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling the dynamics of sediment transport, tides, and sea-level rise: Implications for the resilience of coastal Bengal.
The coastal zone of the Ganges-Brahmaputra-Meghna (GBM) Delta is widely recognized as one of the most vulnerable places to sea-level rise (SLR), with around 57 million people living within 5m of sea level. Sediment transported by the Ganges, Brahmaputra, and Meghna rivers has the potential to raise the land and offset SLR. There is significant uncertainty in future sediment supply and SLR, which raises questions about the sustainability of the delta. We present a simple model, driven by basic physics, to estimate the evolution of the landscape under different conditions at low computational cost. Using a single tuning parameter, the model can match observed rates of land aggradation. We find a strong negative feedback, which robustly brings land elevation into equilibrium with changing sea level. We discuss how this model can be used to investigate the dynamics of sediment transport and the sustainability of the GBM Delta.  more » « less
Award ID(s):
1716909
PAR ID:
10488479
Author(s) / Creator(s):
; ;
Editor(s):
Corlu, C.G.; Hunter, S.R.; Lam, B.; Onggo, S.; Shortle, J.; Biller, B.
Publisher / Repository:
Proceedings of the 2023 Winter Simulation Conference
Date Published:
Journal Name:
Proceedings of the 2023 Winter Simulation Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The principal nature-based solution for offsetting relative sea-level rise in the Ganges-Brahmaputra delta is the unabated delivery, dispersal, and deposition of the rivers’ ~1 billion-tonne annual sediment load. Recent hydrological transport modeling suggests that strengthening monsoon precipitation in the 21st century could increase this sediment delivery 34-60%; yet other studies demonstrate that sediment could decline 15-80% if planned dams and river diversions are fully implemented. We validate these modeled ranges by developing a comprehensive field-based sediment budget that quantifies the supply of Ganges-Brahmaputra river sediment under varying Holocene climate conditions. Our data reveal natural responses in sediment supply comparable to previously modeled results and suggest that increased sediment delivery may be capable of offsetting accelerated sea-level rise. This prospect for a naturally sustained Ganges-Brahmaputra delta presents possibilities beyond the dystopian future often posed for this system, but the implementation of currently proposed dams and diversions would preclude such opportunities. 
    more » « less
  2. Abstract Arising from the non‐uniform dispersal of sediment and water that build deltaic landscapes, morphological change is a fundamental characteristic of river delta behavior. Thus, sustainable deltas require mobility of their channel networks and attendant shifts in landforms. Both behaviors can be misrepresented as degradation, particularly in context of the “stability” that is generally necessitated by human infrastructure and economies. Taking the Ganges‐Brahmaputra‐Meghna Delta as an example, contrary to public perception, this delta system appears to be sustainable at a system scale with high sediment delivery and long‐term net gain in land area. However, many areas of the delta exhibit local dynamics and instability at the scale at which households and communities experience environmental change. Such local landscape “instability” is often cited as evidence that the delta is in decline, whereas much of this change simply reflects the morphodynamics typical of an energetic fluvial‐delta system and do not provide an accurate reflection of overall system health. Here we argue that this disparity between unit‐scale sustainability and local morphodynamic change may be typical of deltaic systems with well‐developed distributary networks and strong spatial gradients in sediment supply and transport energy. Such non‐uniformity and the important connections between network sub‐units (i.e., fluvial, tidal, shelf) suggest that delta risk assessments must integrate local dynamics and sub‐unit connections with unit‐scale behaviors. Structure and dynamics of an integrated deltaic network control the dispersal of water, solids, and solutes to the delta sub‐environment and thus the local to unit‐scale sustainability of the system over time. 
    more » « less
  3. null (Ed.)
    Abstract. The morphology of deltas is determined by the spatial extent and variability of the geomorphic processes that shape them. While in some cases resilient, deltas are increasingly threatened by natural and anthropogenic forces, such as sea level rise and land use change, which can drastically alter the rates and patterns of sediment transport. Quantifying process patterns can improve our predictive understanding of how different zones within delta systems will respond to future change. Available remotely sensed imagery can help, but appropriate tools are needed for pattern extraction and analysis. We present a method for extracting information about the nature and spatial extent of active geomorphic processes across deltas with 10 parameters quantifying the geometry of each of 1239 islands and the channels around them using machine learning. The method consists of a two-step unsupervised machine learning algorithm that clusters islands into spatially continuous zones based on the 10 morphological metrics extracted from remotely sensed imagery. By applying this method to the Ganges–Brahmaputra–Meghna Delta, we find that the system can be divided into six major zones. Classification results show that active fluvial island construction and bar migration processes are limited to relatively narrow zones along the main Ganges River and Brahmaputra and Meghna corridors, whereas zones in the mature upper delta plain with smaller fluvial distributary channels stand out as their own morphometric class. The classification also shows good correspondence with known gradients in the influence of tidal energy with distinct classes for islands in the backwater zone and in the purely tidally controlled region of the delta. Islands at the delta front under the mixed influence of tides, fluvial–estuarine construction, and local wave reworking have their own characteristic shape and channel configuration. The method is not able to distinguish between islands with embankments (polders) and natural islands in the nearby mangrove forest (Sundarbans), suggesting that human modifications have not yet altered the gross geometry of the islands beyond their previous “natural” morphology or that the input data (time, resolution) used in this study are preventing the identification of a human signature. These results demonstrate that machine learning and remotely sensed imagery are useful tools for identifying the spatial patterns of geomorphic processes across delta systems. 
    more » « less
  4. The morphology of deltas is determined by the spatial extent and variability of the geomorphic processes that shape them. While in some cases resilient, deltas are increasingly threatened by natural and anthropogenic forces, such as sea level rise and land use change, which can drastically alter the rates and patterns of sediment transport. Quantifying process patterns can improve our predictive understanding of how different zones within delta systems will respond to future change. Available remotely sensed imagery can help but appropriate tools are needed for pattern extraction and analysis. We present a method for extracting information about the nature and spatial extent of active geomorphic processes across deltas from ten parameters quantifying the geometry of each of 1239 islands and the channels around them using machine learning. The method consists of a two-step unsupervised machine learning algorithm that clusters islands into spatially continuous zones based on the ten morphological metrics extracted from remotely sensed imagery. By applying this method to the Ganges–Brahmaputra–Meghna Delta, we find that the system can be divided into six major zones. Classification results show that active fluvial island construction and bar migration processes are limited to relatively narrow zones along the main Ganges River and Brahmaputra and Meghna corridors, whereas zones in the mature upper delta plain, with smaller fluvial distributary channels stand out as their own morphometric class. The classification also shows good correspondence with known gradients in the influence of tidal energy with distinct classes for islands in the backwater zone and in the purely tidally-controlled region of the delta. Islands at the delta front, under the mixed influence of tides, fluvial-estuarine construction, and local wave reworking have their own characteristic shape and channel configuration. The method does not distinguish between islands with embankments (polders) and natural islands in the nearby mangrove forest (Sundarbans), suggesting that human modifications have not yet altered the gross geometry of the islands beyond their previous natural morphology. These results demonstrate that machine learning and remotely sensed imagery are useful tools for identifying the spatial patterns of geomorphic processes across delta systems. 
    more » « less
  5. Understanding seasonal precipitation input into river basins is important for linking large-scale climate drivers with societal water resources and the occurrence of hydrologic hazards such as floods and riverbank erosion. Using satellite data at 0.25-degree resolution, spatial patterns of monsoon (June-July-August-September) precipitation variability between 1983 and 2015 within the Ganges–Brahmaputra–Meghna (GBM) river basin are analyzed with Principal Component (PC) analysis and the first three modes (PC1, PC2 and PC3) are related to global atmospheric-oceanic fields. PC1 explains 88.7% of the variance in monsoonal precipitation and resembles climatology with the center of action over Bangladesh. The eigenvector coefficients show a downward trend consistent with studies reporting a recent decline in monsoon rainfall, but little interannual variability. PC2 explains 2.9% of the variance and shows rainfall maxima to the far western and eastern portions of the basin. PC2 has an apparent decadal cycle and surface and upper-air atmospheric height fields suggest the pattern could be forced by tropical South Atlantic heating and a Rossby wave train stemming from the North Atlantic, consistent with previous studies. Finally, PC3 explains 1.5% of the variance and has high spatial variability. The distribution of precipitation is somewhat zonal, with highest values at the southern border and at the Himalayan ridge. There is strong interannual variability associated with PC3, related to the El Nino/Southern Oscillation (ENSO). Next, we perform a hydroclimatological downscaling, as precipitation attributed to the three PCs was averaged over the Pfafstetter level-04 sub-basins obtained from the World Wildlife Fund (Gland, Switzerland). While PC1 was the principal contributor of rainfall for all sub-basins, PC2 contributed the most to rainfall in the western Ganges sub-basin (4524) and PC3 contributed the most to the rainfall in the northern Brahmaputra (4529). Monsoon rainfall within these two sub-basins were the only ones to show a significant relationship (negative) with ENSO, whereas four of the eight sub-basins had a significant relationship (positive) with sea surface temperature (SST) anomalies in the tropical South Atlantic. This work demonstrates a geographic dependence on climate teleconnections in the GBM that deserves further study. 
    more » « less