skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimal thermodynamic conditions to minimize kinetic by-products in aqueous materials synthesis
Abstract Phase diagrams offer substantial predictive power for materials synthesis by identifying the stability regions of target phases. However, thermodynamic phase diagrams do not offer explicit information regarding the kinetic competitiveness of undesired by-product phases. Here we propose a quantitative and computable thermodynamic metric to identify synthesis conditions under which the propensity to form kinetically competing by-products is minimized. We hypothesize that thermodynamic competition is minimized when the difference in free energy between a target phase and the minimal energy of all other competing phases is maximized. We validate this hypothesis for aqueous materials synthesis through two empirical approaches: first, by analysing 331 aqueous synthesis recipes text-mined from the literature; and second, by systematic experimental synthesis of LiIn(IO3)4and LiFePO4across a wide range of aqueous electrochemical conditions. Our results show that even for synthesis conditions that are within the stability region of a thermodynamic Pourbaix diagram, phase-pure synthesis occurs only when thermodynamic competition with undesired phases is minimized.  more » « less
Award ID(s):
2240281
PAR ID:
10488515
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Synthesis
Volume:
3
Issue:
4
ISSN:
2731-0582
Format(s):
Medium: X Size: p. 527-536
Size(s):
p. 527-536
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract MXenes are a rapidly growing family of 2D transition metal carbides and nitrides that are promising for various applications, including energy storage and conversion, electronics, and healthcare. Hydrofluoric‐acid‐based etchants are typically used for large‐scale and high‐throughput synthesis of MXenes, which also leads to a mixture of surface terminations that impede MXene properties. Herein, a computational thermodynamic model with experimental validation is presented to explore the feasibility of fluorine‐free synthesis of MXenes with uniform surface terminations by dry selective extraction (DSE) from precursor MAX phases using iodine vapors. A range of MXenes and respective precursor compositions are systematically screened using first‐principles calculations to find candidates with high phase stability and low etching energy. A thermodynamic model based on the “CALculation of PHAse Diagrams” (CALPHAD) approach is further demonstrated, using Ti3C2I2as an example, to assess the Gibbs free energy of the DSE reaction and the state of the byproducts as a function of temperature and pressure. Based on the assessment, the optimal synthesis temperature and vapor pressure are predicted and further verified by experiments. This work opens an avenue for scalable, fluorine‐free dry synthesis of MXenes with compositions and surface chemistries that are not accessible using wet chemical etching. 
    more » « less
  2. Abstract Owing to their overall low energy scales, flexible molecular architectures, and ease of chemical substitution, molecule-based multiferroics are extraordinarily responsive to external stimuli and exhibit remarkably rich phase diagrams. Even so, the stability and microscopic properties of various magnetic states in close proximity to quantum critical points are highly under-explored in these materials. Inspired by these opportunities, we combined pulsed-field magnetization, first-principles calculations, and numerical simulations to reveal the magnetic field–temperature (B–T) phase diagram of multiferroic (NH4)2FeCl5⋅H2O. In this system, a network of intermolecular hydrogen and halogen bonds creates a competing set of exchange interactions that generates additional structure in the phase diagram—both in the vicinity of the spin flop and near the 30 T transition to the fully saturated state. Consequently, the phase diagrams of (NH4)2FeCl5⋅H2O and its deuterated analog are much more complex than those of other molecule-based multiferroics. The entire series of coupled electric and magnetic transitions can be accessed with a powered magnet, opening the door to exploration and control of properties in this and related materials. 
    more » « less
  3. Active learning is a valuable tool for efficiently exploring complex spaces, finding a variety of uses in materials science. However, the determination of convex hulls for phase diagrams does not neatly fit into traditional active learning approaches due to their global nature. Specifically, the thermodynamic stability of a material is not simply a function of its own energy, but rather requires energetic information from all other competing compositions and phases. Here we present Convex hull-aware Active Learning (CAL), a novel Bayesian algorithm that chooses experiments to minimize the uncertainty in the convex hull. CAL prioritizes compositions that are close to or on the hull, leaving significant uncertainty in other compositions that are quickly determined to be irrelevant to the convex hull. The convex hull can thus be predicted with significantly fewer observations than approaches that focus solely on energy. Intrinsic to this Bayesian approach is uncertainty quantification in both the convex hull and all subsequent predictions (e.g., stability and chemical potential). By providing increased search efficiency and uncertainty quantification, CAL can be readily incorporated into the emerging paradigm of uncertainty-based workflows for thermodynamic prediction. 
    more » « less
  4. Abstract Heat capacities and enthalpies of formation of BaGd2O4were determined by high‐temperature differential scanning calorimetry and high‐temperature oxide melt solution calorimetry, respectively. Thermodynamic stability of BaLn2O4compounds increases with decreasing Ln3+ionic radius. Previously reported data on BaNd2O4and BaSm2O4corroborate this trend. Missing data for compounds in BaO–Ln2O3(Ln = La, Pr, Eu, Er) systems were estimated from established relations, thermodynamic assessment was performed, and binary phase diagrams were calculated. 
    more » « less
  5. Abstract Synthesis of intermetallic crystals by electrodeposition of Ag from alkaline aqueous electrolytes containing AgCN onto liquid metal electrodes via an electrochemical liquid‐liquid‐solid (ec‐LLS) process has been performed. X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy were performed to identify crystalline products. Ec‐LLS experiments performed with pure liquid Hg and Ga electrodes resulted in the formation of polycrystalline Ag2Ga and Ag2Hg3. Experiments performed with In‐containing liquid metals preferentially yielded Ag9In4and AgIn2products with liquid Hg0.35In0.65and Ga0.86In0.14, respectively. The product distribution with liquid Hg0.35In0.65depended on the level of Ag supersaturation during the electrodeposition. A mechanism that accounts for the aforementioned observations is presented and discussed. This work described the formation of Ag−In intermetallic phases by the isothermal electroreduction of Ag into different liquid metal solvents via ec‐LLS. Electrodeposition of Ag into a pure Ga or pure Hg liquid metal pool yielded precisely the compounds predicted from isothermal cross‐sections of the respective binary phase diagrams. These compounds were not found when using liquid Hg or Ga containing appreciable In. The smaller enthalpy of formation for AgIn2was consistent with its synthesis in Ga0.86In0.14. However, the observed product of Ag9In4in Hg‐containing liquid metals could not be rationalized solely from thermodynamic factors. Instead, this observation was consistent with a kinetic pathway based on the lability of Hg‐metal bonds and nearly identical crystal structures of Ag9In4and Ag2Hg3. Site exchange of Hg for In is consistent with our prior observations[23]of In exchange into Hg−Pd structures during Pd electrodeposition. This mechanism is not based on any direct role of electrochemistry other than aspects that dictate the operative supersaturation of the metal solute. 
    more » « less