skip to main content


This content will become publicly available on July 23, 2024

Title: Tight Certification of Adversarially Trained Neural Networks via Nonconvex Low-Rank Semidefinite Relaxations
Adversarial training is well-known to produce high-quality neural network models that are empirically robust against adversarial perturbations. Nevertheless, once a model has been adversarially trained, one often desires a certification that the model is truly robust against all future attacks. Unfortunately, when faced with adversarially trained models, all existing approaches have significant trouble making certifications that are strong enough to be practically useful. Linear programming (LP) techniques in particular face a “convex relaxation barrier” that prevent them from making high-quality certifications, even after refinement with mixed-integer linear programming (MILP) and branch-and-bound (BnB) techniques. In this paper, we propose a nonconvex certification technique, based on a low-rank restriction of a semidefinite programming (SDP) relaxation. The nonconvex relaxation makes strong certifications comparable to much more expensive SDP methods, while optimizing over dramatically fewer variables comparable to much weaker LP methods. Despite nonconvexity, we show how off-the-shelf local optimization algorithms can be used to achieve and to certify global optimality in polynomial time. Our experiments find that the nonconvex relaxation almost completely closes the gap towards exact certification of adversarially trained models.  more » « less
Award ID(s):
2047462
NSF-PAR ID:
10488547
Author(s) / Creator(s):
Publisher / Repository:
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:5631-5660, 2023.
Date Published:
Journal Name:
Proceedings of Machine Learning Research
ISSN:
2640-3498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep Neural Networks (DNNs) need to be both efficient and robust for practical uses. Quantization and structure simplification are promising ways to adapt DNNs to mobile devices, and adversarial training is one of the most successful methods to train robust DNNs. In this work, we aim to realize both advantages by applying a convergent relaxation quantization algorithm, i.e., Binary-Relax (BR), to an adversarially trained robust model, i.e. the ResNets Ensemble via Feynman-Kac Formalism (EnResNet). We discover that high-precision quantization, such as ternary (tnn) or 4-bit, produces sparse DNNs. However, this sparsity is unstructured under adversarial training. To solve the problems that adversarial training jeopardizes DNNs’ accuracy on clean images and break the structure of sparsity, we design a trade-off loss function that helps DNNs preserve natural accuracy and improve channel sparsity. With our newly designed trade-off loss function, we achieve both goals with no reduction of resistance under weak attacks and very minor reduction of resistance under strong adversarial attacks. Together with our model and algorithm selections and loss function design, we provide an integrated approach to produce robust DNNs with high efficiency and accuracy. Furthermore, we provide a missing benchmark on robustness of quantized models. 
    more » « less
  2. It has been recently shown that an additional therapeutic gain may be achieved if a radiotherapy plan is altered over the treatment course using a new treatment paradigm referred to in the literature as spatiotemporal fractionation. Because of the nonconvex and large-scale nature of the corresponding treatment plan optimization problem, the extent of the potential therapeutic gain that may be achieved from spatiotemporal fractionation has been investigated using stylized cancer cases to circumvent the arising computational challenges. This research aims at developing scalable optimization methods to obtain high-quality spatiotemporally fractionated plans with optimality bounds for clinical cancer cases. In particular, the treatment-planning problem is formulated as a quadratically constrained quadratic program and is solved to local optimality using a constraint-generation approach, in which each subproblem is solved using sequential linear/quadratic programming methods. To obtain optimality bounds, cutting-plane and column-generation methods are combined to solve the Lagrangian relaxation of the formulation. The performance of the developed methods are tested on deidentified clinical liver and prostate cancer cases. Results show that the proposed method is capable of achieving local-optimal spatiotemporally fractionated plans with an optimality gap of around 10%–12% for cancer cases tested in this study. Summary of Contribution: The design of spatiotemporally fractionated radiotherapy plans for clinical cancer cases gives rise to a class of nonconvex and large-scale quadratically constrained quadratic programming (QCQP) problems, the solution of which requires the development of efficient models and solution methods. To address the computational challenges posed by the large-scale and nonconvex nature of the problem, we employ large-scale optimization techniques to develop scalable solution methods that find local-optimal solutions along with optimality bounds. We test the performance of the proposed methods on deidentified clinical cancer cases. The proposed methods in this study can, in principle, be applied to solve other QCQP formulations, which commonly arise in several application domains, including graph theory, power systems, and signal processing. 
    more » « less
  3. Despite the wide empirical success of modern machine learning algorithms and models in a multitude of applications, they are known to be highly susceptible to seemingly small indiscernible perturbations to the input data known as \emph{adversarial attacks}. A variety of recent adversarial training procedures have been proposed to remedy this issue. Despite the success of such procedures at increasing accuracy on adversarially perturbed inputs or \emph{robust accuracy}, these techniques often reduce accuracy on natural unperturbed inputs or \emph{standard accuracy}. Complicating matters further, the effect and trend of adversarial training procedures on standard and robust accuracy is rather counter intuitive and radically dependent on a variety of factors including the perceived form of the perturbation during training, size/quality of data, model overparameterization, etc. In this paper we focus on binary classification problems where the data is generated according to the mixture of two Gaussians with general anisotropic covariance matrices and derive a precise characterization of the standard and robust accuracy for a class of minimax adversarially trained models. We consider a general norm-based adversarial model, where the adversary can add perturbations of bounded ellp norm to each input data, for an arbitrary p greater than one. Our comprehensive analysis allows us to theoretically explain several intriguing empirical phenomena and provide a precise understanding of the role of different problem parameters on standard and robust accuracies. 
    more » « less
  4. We study the fundamental problem of high-dimensional mean estimation in a robust model where a constant fraction of the samples are adversarially corrupted. Recent work gave the first polynomial time algorithms for this problem with dimension-independent error guarantees for several families of structured distributions. In this work, we give the first nearly-linear time algorithms for high-dimensional robust mean estimation. Specifically, we focus on distributions with (i) known covariance and sub-gaussian tails, and (ii) unknown bounded covariance. Given N samples on R^d, an \eps-fraction of which may be arbitrarily corrupted, our algorithms run in time eO(Nd)/poly(\eps) and approximate the true mean within the information-theoretically optimal error, up to constant factors. Previous robust algorithms with comparable error guarantees have running times \Omega(Nd^2), for \eps= O(1) Our algorithms rely on a natural family of SDPs parameterized by our current guess ν for the unknown mean μ. We give a win-win analysis establishing the following: either a near-optimal solution to the primal SDP yields a good candidate for μ — independent of our current guess ν — or a near-optimal solution to the dual SDP yields a new guess ν0 whose distance from μ is smaller by a constant factor. We exploit the special structure of the corresponding SDPs to show that they are approximately solvable in nearly-linear time. Our approach is quite general, and we believe it can also be applied to obtain nearly-linear time algorithms for other high-dimensional robust learning problems. 
    more » « less
  5. Mode connectivity provides novel geometric insights on analyzing loss landscapes and enables building high-accuracy pathways between well-trained neural networks. In this work, we propose to employ mode connectivity in loss landscapes to study the adversarial robustness of deep neural networks, and provide novel methods for improving this robustness. Our experiments cover various types of adversarial attacks applied to different network architectures and datasets. When network models are tampered with backdoor or error-injection attacks, our results demonstrate that the path connection learned using limited amount of bonafide data can effectively mitigate adversarial effects while maintaining the original accuracy on clean data. Therefore, mode connectivity provides users with the power to repair backdoored or error-injected models. We also use mode connectivity to investigate the loss landscapes of regular and robust models against evasion attacks. Experiments show that there exists a barrier in adversarial robustness loss on the path connecting regular and adversarially-trained models. A high correlation is observed between the adversarial robustness loss and the largest eigenvalue of the input Hessian matrix, for which theoretical justifications are provided. Our results suggest that mode connectivity offers a holistic tool and practical means for evaluating and improving adversarial robustness . 
    more » « less