skip to main content


This content will become publicly available on October 1, 2024

Title: Coupling between magnetic and transport properties in magnetic layered material Mn2-xZnxSb
We synthesized single crystals for Mn2-xZnxSb (0 ≤ x ≤ 1) and studied their magnetic and electronic transport properties. This material system displays rich magnetic phase tunable with temperature and Zn composition. In addition, two groups of distinct magnetic and electronic properties, separated by a critical Zn composition of x = 0.6, are discovered. The Zn-less samples are metallic and characterized by a resistivity jump at the magnetic ordering temperature, while the Zn-rich samples lose metallicity and show a metal-to-insulator transition-like feature tunable by magnetic field. Our findings establish Mn2-xZnxSb as a promising material platform that offers opportunities to study how the coupling of spin, charge, and lattice degrees of freedom governs interesting transport properties in 2D magnets, which is currently a topic of broad interest.  more » « less
Award ID(s):
2238254 2211327
NSF-PAR ID:
10488574
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Acta Materialia
Date Published:
Journal Name:
Acta Materialia
Volume:
259
Issue:
C
ISSN:
1359-6454
Page Range / eLocation ID:
119251
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Topological magnetism typically appears in noncentrosymmetric compounds or compounds with geometric frustration. Here, we report the effective tuning of magnetism in centrosymmetric tetragonal Mn2−xZnxSb by Zn substitution. The magnetism is found to be closely coupled to the transport properties, giving rise to a very large topological Hall effect with fine-tuning of Zn content, which even persists to high temperature (∼250K). The further magnetoentropic analysis suggests that the topological Hall effect is possibly associated with topological magnetism. Our finding suggests Mn2−xZnxSb is a candidate material for a centrosymmetric tetragonal topological magnetic system, offering opportunities for studying and tuning spin textures and developing near room temperature spin-based devices. 
    more » « less
  2. Abstract

    Combining topological insulators (TIs) and magnetic materials in heterostructures is crucial for advancing spin‐based electronics. Magnetic insulators (MIs) can be deposited on TIs using the spin‐spray process, which is a unique nonvacuum, low‐temperature growth process. TIs have highly reactive surfaces that oxidize upon exposure to atmosphere, making it challenging to grow spin‐spray ferrites on TIs. In this work, it is demonstrated that a thin titanium capping layer on TI, followed by oxidation in atmosphere to produce a thin TiOxinterfacial layer, protects the TI surface, without significantly compromising spin transport from the magnetic material across the TiOxto the TI surface states. First, it is demonstrated that in Bi2Te3/TiOx/Ni80Fe20heterostructures, TiOxprovides an excellent barrier against diffusion of magnetic species, yet maintains a large spin‐pumping effect. Second, the TiOxis also used as a protective capping layer on Bi2Te3, followed by the spin‐spray growth of the MI, NixZnyFe2O4(NZFO). For the thinnest TiOxbarriers, Bi2Te3/TiOx/NZFO samples have antiferromagnetic (AFM) disordered interfacial layer because of diffusion. With increasing TiOxbarrier thickness, the diffusion is reduced, but still maintains strong interfacial magnetic exchange‐interaction. These experimental results demonstrate a novel method of low‐temperature growth of magnetic insulators on TIs enabled by interface engineering.

     
    more » « less
  3. null (Ed.)
    FeAs 2−x Se x ( x = 0.30–1.0) samples were synthesized as phase pure powders by conventional solid-state techniques and as single crystals ( x = 0.50) from chemical vapor transport. The composition of the crystals was determined to be Fe 1.025(3) As 1.55(3) Se 0.42(3) , crystallizing in the marcasite structure type, Pnnm space group. FeAs 2−x Se x (0 < x < 1) was found to undergo a marcasite-to-arsenopyrite ( P 2 1 / c space group) structural phase transition at x ∼ 0.65. The structures are similar, with the marcasite structure best described as a solid solution of As/Se, whereas the arsenopyrite has ordered anion sites. Magnetic susceptibility and thermoelectric property measurements from 300–2 K were performed on single crystals, FeAs 1.50 Se 0.50 . Paramagnetic behavior is observed from 300 to 17 K and a Seebeck coefficient of −33 μV K −1 , an electrical resistivity of 4.07 mΩ cm, and a very low κ l of 0.22 W m −1 K −1 at 300 K are observed. In order to determine the impact of the structural transition on the high-temperature thermoelectric properties, polycrystalline FeAs 2−x Se x ( x = 0.30, 0.75, 0.85, 1.0) samples were consolidated into dense pellets for measurements of thermoelectric properties. The x = 0.85 sample shows the best thermoelectric performance. The electronic structure of FeAsSe was calculated with DFT and transport properties were approximately modeled above 500 K. 
    more » « less
  4. Recently discovered magnetic Weyl semimetals (MWSM), with enhanced Berry curvature stemming from the topology of their electronic band structure, have gained much interest for spintronics applications. In this category, Co2MnGa, a room temperature ferromagnetic Heusler alloy, has garnered special interest as a promising material for topologically driven spintronic applications. However, until now, the structural-order dependence of spin current generation efficiency through the spin Hall effect has not been fully explored in this material. In this paper, we study the evolution of magnetic and transport properties of Co2MnGa thin films from the chemically disordered B2 to ordered L21 phase. We also report on the change in spin generation efficiency across these different phases, using heterostructures of Co2MnGa and ferrimagnet CoxTb1−x with perpendicular magnetic anisotropy. We measured large spin Hall angles in both the B2 and L21 phases, and within our experimental limits, we did not observe the advantage brought by the MWSM ordering in generating a strong spin Hall angle over the disordered phases, which suggests more complicated mechanisms over the intrinsic, Weyl-band structure-determined spin Hall effect in these material stacks. 
    more » « less
  5. Germanium telluride is a high performing thermoelectric material that additionally serves as a base for alloys such as GeTe–AgSbTe 2 and GeTe–PbTe. Such performance motivates exploration of other GeTe alloys in order understand the impact of site substitution on electron and phonon transport. In this work, we consider the root causes of the high thermoelectric performance material Ge 1− x Mn x Te. Along this alloy line, the crystal structure, electronic band structure, and electron and phonon scattering all depend heavily on the Mn content. Structural analysis of special quasirandom alloy structures indicate the thermodynamic stability of the rock salt phase over the rhombohedral phase with increased Mn incorporation. Effective band structure calculations indicate band convergence, the emergence of new valence band maxima, and strong smearing at the band edge with increased Mn content in both phases. High temperature measurements on bulk polycrystalline samples show a reduction in hole mobility and a dramatic increase in effective mass with respect to increasing Mn content. In contrast, synthesis as a function of tellurium chemical potential does not significantly impact electronic properties. Thermal conductivity shows a minimum near the rhombohedral to cubic phase transition, while the Mn Ge point defect scattering is weak as indicated by the low K L dependence on the Ge–Mn fraction (Fig. 10). From this work, alloys near this phase transition show optimal performance due to low thermal conductivity, moderate effective mass, and low scattering rates compared to Mn-rich compositions. 
    more » « less