Abstract Spintronics, an evolving interdisciplinary field at the intersection of magnetism and electronics, explores innovative applications of electron charge and spin properties for advanced electronic devices. The topological Hall effect (THE), a key component in spintronics, has gained significance due to emerging theories surrounding noncoplanar chiral spin textures. This study focuses on Mn2‐xZnxSb, a material crystalizing in centrosymmetric space group with rich magnetic phases tunable by Zn contents. Through comprehensive magnetic and transport characterizations, we found that the high‐Zn (x > 0.6) samples display THE which is enhanced with decreasing temperature, while THE in the low‐Zn (x < 0.6) samples show an opposite trend. The coexistence of those distinct temperature dependencies for THE suggests very different magnetic interactions/structures for different compositions and underscores the strong coupling between magnetism and transport in Mn2‐xZnxSb. The findings contribute to understanding topological magnetism in centrosymmetric tetragonal lattices, establishing Mn2‐xZnxSb as a unique platform for exploring tunable transport effects and opening avenues for further exploration in the realm of spintronics. 
                        more » 
                        « less   
                    
                            
                            Coupling between magnetic and transport properties in magnetic layered material Mn2-xZnxSb
                        
                    
    
            We synthesized single crystals for Mn2-xZnxSb (0 ≤ x ≤ 1) and studied their magnetic and electronic transport properties. This material system displays rich magnetic phase tunable with temperature and Zn composition. In addition, two groups of distinct magnetic and electronic properties, separated by a critical Zn composition of x = 0.6, are discovered. The Zn-less samples are metallic and characterized by a resistivity jump at the magnetic ordering temperature, while the Zn-rich samples lose metallicity and show a metal-to-insulator transition-like feature tunable by magnetic field. Our findings establish Mn2-xZnxSb as a promising material platform that offers opportunities to study how the coupling of spin, charge, and lattice degrees of freedom governs interesting transport properties in 2D magnets, which is currently a topic of broad interest. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10488574
- Publisher / Repository:
- Acta Materialia
- Date Published:
- Journal Name:
- Acta Materialia
- Volume:
- 259
- Issue:
- C
- ISSN:
- 1359-6454
- Page Range / eLocation ID:
- 119251
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Topological magnetism typically appears in noncentrosymmetric compounds or compounds with geometric frustration. Here, we report the effective tuning of magnetism in centrosymmetric tetragonal Mn2−xZnxSb by Zn substitution. The magnetism is found to be closely coupled to the transport properties, giving rise to a very large topological Hall effect with fine-tuning of Zn content, which even persists to high temperature (∼250K). The further magnetoentropic analysis suggests that the topological Hall effect is possibly associated with topological magnetism. Our finding suggests Mn2−xZnxSb is a candidate material for a centrosymmetric tetragonal topological magnetic system, offering opportunities for studying and tuning spin textures and developing near room temperature spin-based devices.more » « less
- 
            Promising materials for magnetic refrigeration and thermomagnetic power generation often display strong coupling between magnetism and structure. It has been previously proposed that MnCoP exhibits this strong coupling, contributing to its substantial magnetocaloric effect near TC = 578K. Here, we show from temperature-dependent synchrotron x-ray diffraction that MnCoP displays a discontinuity in the thermal expansion at TC, with spontaneous magnetostriction that is positive in the a direction and negative in the b direction, highlighting the anisotropic nature of the magnetostructural coupling. Varying the Mn:Co ratio of Mn2−xCoxP within the range of 0.6 ≤ x ≤ 1.4 allows the magnetic properties to be tuned. TC decreases as the composition deviates from stoichiometric MnCoP, as does the saturation magnetization. The magnitude of the magnetocaloric effect, |ΔSM|, decreases as well, due to broadening of the magnetic transition. The large reversible change in magnetization ΔM accessible over a small temperature range under moderate magnetic fields makes these materials promising for thermomagnetic power generation from waste heat.more » « less
- 
            Abstract We describe an integrated modelling approach to accelerate the search for novel, single-phase, multicomponent materials with high magnetocrystalline anisotropy (MCA). For a given system we predict the nature of atomic ordering, its dependence on the magnetic state, and then proceed to describe the consequent MCA, magnetisation, and magnetic critical temperature (Curie temperature). Crucially, within our modelling framework, the same ab initio description of a material’s electronic structure determines all aspects. We demonstrate this holistic method by studying the effects of alloying additions in FeNi, examining systems with the general stoichiometries Fe4Ni3Xand Fe3Ni4X, for additives includingX = Pt, Pd, Al, and Co. The atomic ordering behaviour predicted on adding these elements, fundamental for determining a material’s MCA, is rich and varied. Equiatomic FeNi has been reported to require ferromagnetic order to establish the tetragonal L10order suited for significant MCA. Our results show that when alloying additions are included in this material, annealing in an applied magnetic field and/or below a material’s Curie temperature may also promote tetragonal order, along with an appreciable effect on the predicted hard magnetic properties.more » « less
- 
            New magnetic materials for energy and information-processing applications are of paramount importance in view of significant global challenges in environmental and information security. The discovery and design of materials requires efficient computational and experimental approaches for high throughput and efficiency. When increasingly powerful computational techniques are combined with special non-equilibrium fabrication methods, the search can uncover metastable compounds with desired magnetic properties. Here we review recent results on novel Fe-, Co- and Mn-rich magnetic compounds with high magnetocrystalline anisotropy, saturation magnetization, and Curie temperature created by combining experiments, adaptive genetic algorithm searches, and advanced electronic-structure computational methods. We discuss structural and magnetic properties of such materials including Co– and/or Fe–X compounds (X = N, Si, Sn, Zr, Hf, Y, C, S, Ti, or Mn), and their prospects for practical applications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    