skip to main content


Title: Enhancement of heat and mass transfer by herringbone microstructures in a simple shear flow

The heat and mass transfer characteristics of a simple shear flow over a surface covered with staggered herringbone structures are numerically investigated using the lattice Boltzmann method. Two flow motions are identified. The first is a spiral flow oscillation above the herringbone structures that advect heat and mass from the top plane to herringbone structures. The second is a flow recirculation in the grooves between the ridges that advect heat and mass from the area around the tips of the structures to their side walls and the bottom surfaces. These two basic flow motions couple together to form a complex transport mechanism. The results show that when advective heat and mass transfer takes effect at relatively large Reynolds and Schmidt numbers, the dependence of the total transfer rate on Schmidt number follows a power law, with the exponent being the same as that in the Dittus–Boelter equation for turbulent heat transfer. As the Reynolds number increases, the dependence of the total transfer rate on the Reynolds number also approaches a power law, and the exponent is close to that in the Dittus–Boelter equation.

 
more » « less
Award ID(s):
2138740
NSF-PAR ID:
10488596
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Physics of Fluids
Volume:
34
Issue:
8
ISSN:
1070-6631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Advection-enhanced heat and mass transport from a single droplet neutrally suspended in a simple shear flow has been studied using high-fidelity numerical simulation. The capillary number ranges from 0.01 to 0.5, which encompasses the entire range of small deformation, large deformation, and breakup of the droplets. The Reynolds number is from 0.01 to 1, including regions of both weak and strong advection. The temperature and mass concentration are modeled as the concentration of a passive scalar released at the droplet surface. Two Schmidt numbers, 10 and 100, are considered, for which flow advection plays a role in the transport of passive scalar. For unbroken droplets, the interaction between the carrier fluid and the suspended droplet leads to several different flows around the droplet. The fluid motions together with scalar diffusion constitute a coupled transport mechanism for passive scalar. The dependence of scalar release rate on Reynolds and Peclet numbers can be roughly described by the correlation for a rigid sphere. For broken droplets, the basic flow features around the droplet during the process of elongation and breakup are similar to those of an unbroken droplet. The variation of the scalar release rate can be decomposed into several stages, corresponding to the process of droplet elongation and breakup. The variation of the scalar release rate exhibits a high correlation with the capillary, Reynolds, and Peclet numbers. This suggests that it is feasible to develop an empirical model that incorporates the effects of the number and size distributions of child droplets after breakup.

     
    more » « less
  2. We perform direct numerical simulations of a gas bubble dissolving in a surrounding liquid. The bubble volume is reduced due to dissolution of the gas, with the numerical implementation of an immersed boundary method, coupling the gas diffusion and the Navier–Stokes equations. The methods are validated against planar and spherical geometries’ analytical moving boundary problems, including the classic Epstein–Plesset problem. Considering a bubble rising in a quiescent liquid, we show that the mass transfer coefficient $k_L$ can be described by the classic Levich formula $k_L = (2/\sqrt {{\rm \pi} })\sqrt {\mathscr {D}_l\,U(t)/d(t)}$ , with $d(t)$ and $U(t)$ the time-varying bubble size and rise velocity, and $\mathscr {D}_l$ the gas diffusivity in the liquid. Next, we investigate the dissolution and gas transfer of a bubble in homogeneous and isotropic turbulence flow, extending Farsoiya et al. ( J. Fluid Mech. , vol. 920, 2021, A34). We show that with a bubble size initially within the turbulent inertial subrange, the mass transfer coefficient in turbulence $k_L$ is controlled by the smallest scales of the flow, the Kolmogorov $\eta$ and Batchelor $\eta _B$ microscales, and is independent of the bubble size. This leads to the non-dimensional transfer rate ${Sh}=k_L L^\star /\mathscr {D}_l$ scaling as ${Sh}/{Sc}^{1/2} \propto {Re}^{3/4}$ , where ${Re}$ is the macroscale Reynolds number ${Re} = u_{rms}L^\star /\nu _l$ , with $u_{rms}$ the velocity fluctuations, $L^*$ the integral length scale, $\nu _l$ the liquid viscosity, and ${Sc}=\nu _l/\mathscr {D}_l$ the Schmidt number. This scaling can be expressed in terms of the turbulence dissipation rate $\epsilon$ as ${k_L}\propto {Sc}^{-1/2} (\epsilon \nu _l)^{1/4}$ , in agreement with the model proposed by Lamont & Scott ( AIChE J. , vol. 16, issue 4, 1970, pp. 513–519) and corresponding to the high $Re$ regime from Theofanous et al. ( Intl J. Heat Mass Transfer , vol. 19, issue 6, 1976, pp. 613–624). 
    more » « less
  3. null (Ed.)
    This study explores thermal convection in suspensions of neutrally buoyant, non-colloidal suspensions confined between horizontal plates. A constitutive diffusion equation is used to model the dynamics of the particles suspended in a viscous fluid and it is coupled with the flow equations. We employ a simple model that was proposed by Metzger, Rahli & Yin ( J. Fluid Mech. , vol. 724, 2013, pp. 527–552) for the effective thermal diffusivity of suspensions. This model considers the effect of shear-induced diffusion and gives the thermal diffusivity increasing linearly with the thermal Péclet number ( Pe ) and the particle volume fraction ( ϕ ). Both linear stability analysis and numerical simulation based on the mathematical models are performed for various bulk particle volume fractions $({\phi _b})$ ranging from 0 to 0.3. The critical Rayleigh number $(R{a_c})$ grows gradually by increasing ${\phi _b}$ from the critical value $(R{a_c} = 1708)$ for a pure Newtonian fluid, while the critical wavenumber $({k_c})$ remains constant at 3.12. The transition from the conduction state of suspensions is subcritical, whereas it is supercritical for the convection in a pure Newtonian fluid $({\phi _b} = 0)$ . The heat transfer in moderately dense suspensions $({\phi _b} = 0.2\text{--}0.3)$ is significantly enhanced by convection rolls for small Rayleigh number ( Ra ) close to $R{a_c}$ . We also found a power-law increase of the Nusselt number ( Nu ) with Ra , namely, $Nu\sim R{a^b}$ for relatively large values of Ra where the scaling exponent b decreases with ${\phi _b}$ . Finally, it turns out that the shear-induced migration of particles can modify the heat transfer. 
    more » « less
  4. The role of solid obstacle surface roughness in turbulent convection in porous media is not well understood, even though it is frequently used for heat transfer enhancement in many applications. The focus of this paper is to systematically study the influence of solid obstacle surface roughness in porous media on the microscale flow physics and report its effect on macroscale drag and Nusselt number. The Reynolds-averaged flow field is numerically simulated using the realizable k-ε model for a flow through a periodic porous medium consisting of an in-line arrangement of square cylinders with square roughness particles on the cylinder surface. Two flow regimes are identified with respect to the surface roughness particle height—fine and coarse roughness regimes. The effect of the roughness particles in the fine roughness regime is limited to the near-wall boundary layer around the solid obstacle surface. In the coarse roughness regime, the roughness particles modify the microscale flow field in the entire pore space of the porous medium. In the fine roughness regime, the heat transfer from the rough solid obstacles to the fluid inside the porous medium is less than that from a smooth solid obstacle. In the coarse roughness regime, there is an enhancement in the heat transfer from the rough solid obstacle to the fluid inside the porous medium. Total drag reduction is also observed in the fine roughness regime for the smallest roughness particle height. The surface roughness particle spacing determines the fractional area of the solid obstacle surface covered by recirculating, reattached, and stagnating flow. As the roughness particle spacing increases, there are two competing factors for the heat transfer rate—increase due to more surface area covered by reattached flow and decrease due to fewer roughness particles on the solid obstacle surface. Decreasing the porosity and increasing the Reynolds number amplify the effect of the surface roughness on the microscale flow. The results suggest that heat transfer in porous media can be enhanced, if the increase in drag can be overcome. The results also show that the fine roughness regime, which is frequently encountered due to corrosion, is detrimental to the heat transfer performance of porous media. 
    more » « less
  5. The interplay between viscoelasticity and inertia in dilute polymer solutions at high deformation rates can result in inertioelastic instabilities. The nonlinear evolution of these instabilities generates a state of turbulence with significantly different spatiotemporal features compared to Newtonian turbulence, termed elastoinertial turbulence (EIT). We ex- plore EIT by studying the dynamics of a submerged planar jet of a dilute aqueous polymer solution injected into a quiescent tank of water using a combination of schlieren imaging and laser Doppler velocimetry (LDV). We show how fluid elasticity has a nonmonotonic effect on the jet stability depending on its magnitude, creating two distinct regimes in which elastic effects can either destabilize or stabilize the jet. In agreement with linear stability analyses of viscoelastic jets, an inertioelastic shear-layer instability emerges near the edge of the jet for small levels of elasticity, independent of bulk undulations in the fluid column. The growth of this disturbance mode destabilizes the flow, resulting in a turbulence transition at lower Reynolds numbers and closer to the nozzle compared to the conditions required for the transition to turbulence in a Newtonian jet. Increasing the fluid elasticity merges the shear-layer instability into a bulk instability of the jet column. In this regime, elastic tensile stresses generated in the shear layer act as an “elastic membrane” that partially stabilizes the flow, retarding the transition to turbulence to higher levels of inertia and greater distances from the nozzle. In the fully turbulent state far from the nozzle, planar viscoelastic jets exhibit unique spatiotemporal features associated with EIT. The time-averaged angle of jet spreading, an Eulerian measure of the degree of entrainment, and the centerline velocity of the jets both evolve self-similarly with distance from the nozzle. The autocovariance of the schlieren images in the fully turbulent region of the jets shows coherent structures that are elongated in the streamwise direction, consistent with the suppression of streamwise vortices by elastic stresses. These coherent structures give a higher spectral energy to small frequency modes in EIT characterized by LDV measurements of the velocity fluctuations at the jet centerline. Finally, our LDV measurements reveal a frequency spectrum characterized by a −3 power-law exponent, different from the well-known −5/3 power-law exponent characteristic of Newtonian turbulence. 
    more » « less