skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rigidity of nonpositively curved manifolds with convex boundary
We show that a compact Riemannian 3 3 -manifold M M with strictly convex simply connected boundary and sectional curvature K ≤<#comment/> a ≤<#comment/> 0 K\leq a\leq 0 is isometric to a convex domain in a complete simply connected space of constant curvature a a , provided that K ≡<#comment/> a K\equiv a on planes tangent to the boundary of M M . This yields a characterization of strictly convex surfaces with minimal total curvature in Cartan-Hadamard 3 3 -manifolds, and extends some rigidity results of Greene-Wu, Gromov, and Schroeder-Strake. Our proof is based on a recent comparison formula for total curvature of Riemannian hypersurfaces, which also yields some dual results for K ≥<#comment/> a ≥<#comment/> 0 K\geq a\geq 0 more » « less
Award ID(s):
2202337
PAR ID:
10488624
Author(s) / Creator(s):
;
Publisher / Repository:
American Mathematical Society
Date Published:
Journal Name:
Proceedings of the American Mathematical Society
Volume:
151
Issue:
773
ISSN:
0002-9939
Page Range / eLocation ID:
4935 to 4940
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We say a null-homologous knot K K in a 3 3 -manifold Y Y has Property G, if the Thurston norm and fiberedness of the complement of K K is preserved under the zero surgery on K K . In this paper, we will show that, if the smooth 4 4 -genus of K ×<#comment/> { 0 } K\times \{0\} (in a certain homology class) in ( Y ×<#comment/> [ 0 , 1 ] ) #<#comment/> N C P 2 ¯<#comment/> (Y\times [0,1])\#N\overline {\mathbb CP^2} , where Y Y is a rational homology sphere, is smaller than the Seifert genus of K K , then K K has Property G. When the smooth 4 4 -genus is 0 0 , Y Y can be taken to be any closed, oriented 3 3 -manifold. 
    more » « less
  2. Let f f be analytic on [ 0 , 1 ] [0,1] with | f ( k ) ( 1 / 2 ) | ⩽<#comment/> A α<#comment/> k k ! |f^{(k)}(1/2)|\leqslant A\alpha ^kk! for some constants A A and α<#comment/> > 2 \alpha >2 and all k ⩾<#comment/> 1 k\geqslant 1 . We show that the median estimate of μ<#comment/> = ∫<#comment/> 0 1 f ( x ) d x \mu =\int _0^1f(x)\,\mathrm {d} x under random linear scrambling with n = 2 m n=2^m points converges at the rate O ( n −<#comment/> c log ⁡<#comment/> ( n ) ) O(n^{-c\log (n)}) for any c > 3 log ⁡<#comment/> ( 2 ) / π<#comment/> 2 ≈<#comment/> 0.21 c> 3\log (2)/\pi ^2\approx 0.21 . We also get a super-polynomial convergence rate for the sample median of 2 k −<#comment/> 1 2k-1 random linearly scrambled estimates, when k / m k/m is bounded away from zero. When f f has a p p ’th derivative that satisfies a λ<#comment/> \lambda -Hölder condition then the median of means has error O ( n −<#comment/> ( p + λ<#comment/> ) + ϵ<#comment/> ) O( n^{-(p+\lambda )+\epsilon }) for any ϵ<#comment/> > 0 \epsilon >0 , if k →<#comment/> ∞<#comment/> k\to \infty as m →<#comment/> ∞<#comment/> m\to \infty . The proof techniques use methods from analytic combinatorics that have not previously been applied to quasi-Monte Carlo methods, most notably an asymptotic expression from Hardy and Ramanujan on the number of partitions of a natural number. 
    more » « less
  3. The hypersimplex Δ<#comment/> k + 1 , n \Delta _{k+1,n} is the image of the positive Grassmannian G r k + 1 , n ≥<#comment/> 0 Gr^{\geq 0}_{k+1,n} under the moment map. It is a polytope of dimension n −<#comment/> 1 n-1 in R n \mathbb {R}^n . Meanwhile, the amplituhedron A n , k , 2 ( Z ) \mathcal {A}_{n,k,2}(Z) is the projection of the positive Grassmannian G r k , n ≥<#comment/> 0 Gr^{\geq 0}_{k,n} into the Grassmannian G r k , k + 2 Gr_{k,k+2} under a map Z ~<#comment/> \tilde {Z} induced by a positive matrix Z ∈<#comment/> M a t n , k + 2 > 0 Z\in Mat_{n,k+2}^{>0} . Introduced in the context ofscattering amplitudes, it is not a polytope, and has full dimension 2 k 2k inside G r k , k + 2 Gr_{k,k+2} . Nevertheless, there seem to be remarkable connections between these two objects viaT-duality, as conjectured by Łukowski, Parisi, and Williams [Int. Math. Res. Not. (2023)]. In this paper we use ideas from oriented matroid theory, total positivity, and the geometry of the hypersimplex and positroid polytopes to obtain a deeper understanding of the amplituhedron. We show that the inequalities cutting outpositroid polytopes—images of positroid cells of G r k + 1 , n ≥<#comment/> 0 Gr^{\geq 0}_{k+1,n} under the moment map—translate into sign conditions characterizing the T-dualGrasstopes—images of positroid cells of G r k , n ≥<#comment/> 0 Gr^{\geq 0}_{k,n} under Z ~<#comment/> \tilde {Z} . Moreover, we subdivide the amplituhedron intochambers, just as the hypersimplex can be subdivided into simplices, with both chambers and simplices enumerated by the Eulerian numbers. We use these properties to prove the main conjecture of Łukowski, Parisi, and Williams [Int. Math. Res. Not. (2023)]: a collection of positroid polytopes is a tiling of the hypersimplex if and only if the collection of T-dual Grasstopes is a tiling of the amplituhedron A n , k , 2 ( Z ) \mathcal {A}_{n,k,2}(Z) for all Z Z . Moreover, we prove Arkani-Hamed–Thomas–Trnka’s conjectural sign-flip characterization of A n , k , 2 \mathcal {A}_{n,k,2} , and Łukowski–Parisi–Spradlin–Volovich’s conjectures on m = 2 m=2 cluster adjacencyand onpositroid tilesfor A n , k , 2 \mathcal {A}_{n,k,2} (images of 2 k 2k -dimensional positroid cells which map injectively into A n , k , 2 \mathcal {A}_{n,k,2} ). Finally, we introduce new cluster structures in the amplituhedron. 
    more » « less
  4. Let ( R , m ) (R,\mathfrak {m}) be a Noetherian local ring of dimension d ≥<#comment/> 2 d\geq 2 . We prove that if e ( R ^<#comment/> r e d ) > 1 e(\widehat {R}_{red})>1 , then the classical Lech’s inequality can be improved uniformly for all m \mathfrak {m} -primary ideals, that is, there exists ε<#comment/> > 0 \varepsilon >0 such that e ( I ) ≤<#comment/> d ! ( e ( R ) −<#comment/> ε<#comment/> ) ℓ<#comment/> ( R / I ) e(I)\leq d!(e(R)-\varepsilon )\ell (R/I) for all m \mathfrak {m} -primary ideals I ⊆<#comment/> R I\subseteq R . This answers a question raised by Huneke, Ma, Quy, and Smirnov [Adv. Math. 372 (2020), pp. 107296, 33]. We also obtain partial results towards improvements of Lech’s inequality when we fix the number of generators of I I
    more » « less
  5. Let R R be a standard graded algebra over a field. We investigate how the singularities of Spec ⁡<#comment/> R \operatorname {Spec} R or Proj ⁡<#comment/> R \operatorname {Proj} R affect the h h -vector of R R , which is the coefficient of the numerator of its Hilbert series. The most concrete consequence of our work asserts that if R R satisfies Serre’s condition ( S r ) (S_r) and has reasonable singularities (Du Bois on the punctured spectrum or F F -pure), then h 0 h_0 , …, h r ≥<#comment/> 0 h_r\geq 0 . Furthermore the multiplicity of R R is at least h 0 + h 1 + ⋯<#comment/> + h r −<#comment/> 1 h_0+h_1+\dots +h_{r-1} . We also prove that equality in many cases forces R R to be Cohen-Macaulay. The main technical tools are sharp bounds on regularity of certain Ext \operatorname {Ext} modules, which can be viewed as Kodaira-type vanishing statements for Du Bois and F F -pure singularities. Many corollaries are deduced, for instance that nice singularities of small codimension must be Cohen-Macaulay. Our results build on and extend previous work by de Fernex-Ein, Eisenbud-Goto, Huneke-Smith, Murai-Terai and others. 
    more » « less