skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Isotope effect suggests site‐specific nonadiabaticity on Ge(111) c (2×8)
Abstract Energy transferred in atom‐surface collisions typically depends strongly on projectile mass, an effect that can be experimentally detected by isotopic substitution. In this work, we present measurements of inelastic H and D atom scattering from a semiconducting Ge(111)c(2×8) surface exhibiting two scattering channels. The first channel shows the expected isotope effect and is quantitatively reproduced by electronically adiabatic molecular dynamics simulations. The second channel involves electronic excitations of the solid and, surprisingly, exhibits almost no isotope effect. We attribute these observations to scattering dynamics, wherein the likelihood of electronic excitation varies with the impact site engaged in the interaction. Key PointsPrevious work revealed that H atoms with sufficient translational energy can excite electrons over the band gap of a semiconductor in a surface collision.We studied the isotope effect of the energy transfer by H/D substitution and performed band structure calculations to elucidate the underlying excitation mechanism.Our results suggest a site‐specific mechanism that requires the atom to hit a specific surface site to excite an electron‐hole pair.  more » « less
Award ID(s):
2306975 1951328
PAR ID:
10488707
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Natural Sciences
Volume:
4
Issue:
1
ISSN:
2698-6248
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. AbstractBreathing behaviour involves the generation of normal breaths (eupnoea) on a timescale of seconds and sigh breaths on the order of minutes. Both rhythms emerge in tandem from a single brainstem site, but whether and how a single cell population can generate two disparate rhythms remains unclear. We posit that recurrent synaptic excitation in concert with synaptic depression and cellular refractoriness gives rise to the eupnoea rhythm, whereas an intracellular calcium oscillation that is slower by orders of magnitude gives rise to the sigh rhythm. A mathematical model capturing these dynamics simultaneously generates eupnoea and sigh rhythms with disparate frequencies, which can be separately regulated by physiological parameters. We experimentally validated key model predictions regarding intracellular calcium signalling. All vertebrate brains feature a network oscillator that drives the breathing pump for regular respiration. However, in air‐breathing mammals with compliant lungs susceptible to collapse, the breathing rhythmogenic network may have refashioned ubiquitous intracellular signalling systems to produce a second slower rhythm (for sighs) that prevents atelectasis without impeding eupnoea.image Key pointsA simplified activity‐based model of the preBötC generates inspiratory and sigh rhythms from a single neuron population.Inspiration is attributable to a canonical excitatory network oscillator mechanism.Sigh emerges from intracellular calcium signalling.The model predicts that perturbations of calcium uptake and release across the endoplasmic reticulum counterintuitively accelerate and decelerate sigh rhythmicity, respectively, which was experimentally validated.Vertebrate evolution may have adapted existing intracellular signalling mechanisms to produce slow oscillations needed to optimize pulmonary function in mammals. 
    more » « less
  2. As seen in experiments with poly(3‐hexylthiophene), substitution of hydrogen with deuterium on the main chain alone decreases crystallinity. To understand this effect, a general formalism for analysis of the dipole moments and polarizabilities incorporating quantum nuclei, is developed. The formalism, based on quantum dynamics of the proton/deuteron and on the perturbative analysis of the dipole interaction energy, accounts for the anharmonicity of a potential energy surface and for the anisotropy of molecular dipole moments. The formalism is implemented within the Discrete Variable Representation and the Density Functional Theory describing, respectively, the quantum proton/deuteron on the thiophene ring and the electronic structure of the 27‐atom model polymer chain, embedded into a larger crystalline environment. The isotope effect is mainly attributed to the differences in the zero‐point energy of the CH/CD bonds and to the isotope‐dependence of the dipole‐dipole inter‐chain interactions. 
    more » « less
  3. Abstract Sorption ofmyo‐inositol hexakisphosphate (IHP), a common type of organic phosphorus in soils, largely controls its mobility and bioavailability. Research on the interaction between IHP and phyllosilicate minerals such as kaolinite, which is commonly present in highly weathered soils, has often been neglected, probably due to the common assumption that negatively charged phyllosilicate minerals have low sorption capacity and binding affinity to IHP and thus do not play any significant role in its fate. Here, the interaction between IHP and poorly crystallized kaolinite (KGa‐2) was investigated in batch experiments using Zeta (ζ) potential measurement and31P nuclear magnetic resonance (NMR) spectroscopy. The results showed that dissolved Al(III) concentration at the adsorption initiation stage increased with increasing IHP concentration at pH 4.0. From pH 2.5 to 9.0, IHP presented a maximum sorption capacity (50 μmol g−1) at pH 4.0 at 24 hr. With IHP sorption, theζpotential of kaolinite first decreased sharply to a negative value, then gradually increased with resorption of Al(III) released from kaolinite dissolution at acidic pH, and finally approached the original value of the pure kaolinite.31P NMR spectroscopy andζpotential analyses revealed that IHP formed inner‐sphere surface complexes and aluminium phytate precipitated on kaolinite at low pH (2.5 and 4.0), whereas the formation of inner‐sphere surface complexes was the dominant sorption mechanism at pH ≥ 5.5. This study implies that various mechanisms, depending on ambient pH condition, can dominate the IHP sorption onto kaolinite, which impacts the mobility and bioavailability of phosphorus in highly weathered soils. HighlightsIHP promotes the dissolution of kaolinite mainly through the formation of aluminium phytate complex.IHP sorption presents a sharp maximum at pH 4.0.IHP forms inner‐sphere complexes at the surface of kaolinite.Formation of aluminium phytate surface precipitates is favourable at relatively low pH. 
    more » « less
  4. The crystal structures of 2,3,4,6-tetra- O -benzoyl-β-D-galactopyranosyl-(1→4)-1,2,6-tri- O -benzoyl-β-D-glucopyranose ethyl acetate hemisolvate, C 61 H 50 O 18 ·0.5C 4 H 8 O 2 , and 1,2,4,6-tetra- O -benzoyl-β-D-glucopyranose acetone monosolvate, C 34 H 28 O 10 ·C 3 H 6 O, were determined and compared to those of methyl β-D-galactopyranosyl-(1→4)-β-D-glucopyranoside (methyl β-lactoside) and methyl β-D-glucopyranoside hemihydrate, C 7 H 14 O 6 ·0.5H 2 O, to evaluate the effects of O -benzoylation on bond lengths, bond angles and torsion angles. In general, O -benzoylation exerts little effect on exo- and endocyclic C—C and endocyclic C—O bond lengths, but exocyclic C—O bonds involved in O -benzoylation are lengthened by 0.02–0.04 Å depending on the site of substitution. The conformation of the O -benzoyl side-chains is highly conserved, with the carbonyl O atom either eclipsing the H atom attached to a 2°-alcoholic C atom or bisecting the H—C—H bond angle of an 1°-alcoholic C atom. Of the three bonds that determine the side-chain geometry, the C—O bond involving the alcoholic C atom exhibits greater rotational variability than the remaining C—O and C—C bonds involving the carbonyl C atom. These findings are in good agreement with recent solution NMR studies of the O -acetyl side-chain conformation in saccharides. 
    more » « less
  5. It has been challenging to synthesize p-type SnOx(1≤x<2) and engineer the electrical properties such as carrier density and mobility due to the narrow processing window and the localized oxygen 2p orbitals near the valence band. We recently reported on the processing of p-type SnOx and an oxide-based p-n heterostructures, demonstrating high on/off rectification ratio (>103), small turn-on voltage (<0.5 V), and low saturation current (~1×10-10A)1. In order to further understand the p-type oxide and engineer the properties for various electronic device applications, it is important to identify (or establish) the dominating doping and transport mechanisms. The low dopability in p-type SnOx, of which the causation is also closely related to the narrow processing window, needs to be mitigated so that the electrical properties of the material are to be adequately engineered2, 3. Herein, we report on the multifunctional encapsulation of p-SnOxto limit the surface adsorption of oxygen and selectively permeate hydrogen into the p-SnOxchannel for thin film transistor (TFT) applications. Time-of-flight secondary ion mass spectrometry measurements identified that ultra-thin SiO2as a multifunctional encapsulation layer effectively suppressed the oxygen adsorption on the back channel surface of p-SnOxand augmented hydrogen density across the entire thickness of the channel. Encapsulated p-SnOx-based TFTs demonstrated much-enhanced channel conductance modulation in response to the gate bias applied, featuring higher on-state current and lower off-state current. The relevance between the TFT performance and the effects of oxygen suppression and hydrogen permeation is discussed in regard to the intrinsic and extrinsic doping mechanisms. These results are supported by density-functional-theory calculations. Acknowledgement This work was supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 20011028) by KRISS. K.N. was supported by Basic Science Research Program (NRF-2021R11A1A01051246) through the NRF Korea funded by the Ministry of Education. ReferencesLee, D. H.; Park, H.; Clevenger, M.; Kim, H.; Kim, C. S.; Liu, M.; Kim, G.; Song, H. W.; No, K.; Kim, S. Y.; Ko, D.-K.; Lucietto, A.; Park, H.; Lee, S., High-Performance Oxide-Based p–n Heterojunctions Integrating p-SnOx and n-InGaZnO.ACS Applied Materials & Interfaces2021,13(46), 55676-55686.Hautier, G.; Miglio, A.; Ceder, G.; Rignanese, G.-M.; Gonze, X., Identification and design principles of low hole effective mass p-type transparent conducting oxides.Nat Commun2013,4.Yim, K.; Youn, Y.; Lee, M.; Yoo, D.; Lee, J.; Cho, S. H.; Han, S., Computational discovery of p-type transparent oxide semiconductors using hydrogen descriptor.npj Computational Materials2018,4(1), 17. Figure 1 
    more » « less