Little is known about how multi-hazard environments affect people, especially those living in urban areas in northern latitudes. This study surveyed homeowners in both Anchorage and Fairbanks, USA, Alaska’s two larger urban centers, to measure individual risk perceptions, mitigation response, and damages related to wildfire, ice hazards, and permafrost thaw. A geospatial hazard assessment informed the survey’s stratified sampling design. The survey had 751 respondents.
more »
« less
Spatial distribution of wildfire threat in the far north: exposure assessment in boreal communities
Abstract Increased wildfire activity has raised concerns among communities about how to assess and prepare for this threat. There is a need for wildfire hazard assessment approaches that capture local variability to inform decisions, produce results understood by the public, and are updatable in a timely manner. We modified an existing approach to assess decadal wildfire hazards based primarily on ember dispersal and wildfire proximity, referencing landscape changes from 1984 through 2014. Our modifications created a categorical flammability hazard scheme, rather than dichotomous, and integrated wildfire exposure results across spatial scales. We used remote sensed land cover from four historical decadal points to create flammability hazard and wildfire exposure maps for three arctic communities (Anchorage and Fairbanks, Alaska and Whitehorse, Yukon). Within the Fairbanks study area, we compared 2014 flammability hazard, wildfire exposure, and FlamMap burn probabilities among burned (2014–2023) and unburned areas. Unlike burn probabilities, there were significantly higher in exposure values among burned and unburned locations (Wilcoxon;p < 0.001) and exposure rose as flammability hazard classes increased (Kruskal–Wallis;p < 0.001). Very high flammability hazard class supported 75% of burned areas and burns tended to occur in areas with 60% exposure or greater. Areas with high exposure values are more prone to burn and thus desirable for mitigation actions. By working with wildfire practitioners and communities, we created a tool that rapidly assesses wildfire hazards and is easily modified to help identify and prioritize mitigation activities.
more »
« less
- PAR ID:
- 10488711
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Natural Hazards
- Volume:
- 120
- Issue:
- 5
- ISSN:
- 0921-030X
- Format(s):
- Medium: X Size: p. 4901-4924
- Size(s):
- p. 4901-4924
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Currently, more than half of the world’s human population lives in urban areas, which are increasingly affected by climate hazards. Little is known about how multi-hazard environments affect people, especially those living in urban areas in northern latitudes. This study surveyed homeowners in Anchorage and Fairbanks, USA, Alaska’s largest urban centers, to measure individual risk perceptions, mitigation response, and damages related to wildfire, surface ice hazards, and permafrost thaw. Up to one third of residents reported being affected by all three hazards, with surface ice hazards being the most widely distributed, related to an estimated $25 million in annual damages. Behavioral risk response, policy recommendations for rapidly changing urban environments, and the challenges to local governments in mitigation efforts are discussed.more » « less
-
Climate change and land-use legacies have caused a shift in wildfires and post-fire growing conditions. These changes have strong potential to diminish the resilience of many ecosystems, with cascading effects and feedbacks across taxa. Piñon-juniper (PJ) woodlands are a diverse and widespread forest type in the western US and are home to many obligate and semi-obligate bird species. As such, this system is ideal for understanding wildfire resilience, or lack thereof, in terms of both vegetation and wildlife associations. This study evaluated post-fire vegetation structure and associated avian communities following three wildfires; one that burned one year prior to sampling (recent fire), and two that burned approximately 25 years previously (old fires). Vegetation characteristics and the habitat use of PJ-associated bird species were compared across severely burned patches, unburned refugia, and unburned sites outside of the burn perimeter. We expected wildfire to alter vegetation and bird usage for the first few years post-fire, which we observed in our recent burns. However, even 25-years post-fire, little recovery to PJ woodland had occurred and the associated bird communities had not returned, compared to unburned areas. No piñon regeneration was observed in any burned areas and no juniper regeneration in the recent fire. Piñon seedling densities in unburned sites and refugia averaged 80 ha−1 and 151 ha−1, respectively, while juniper seedling densities were 220 ha−1 in both habitat types. Habitat use for thirteen PJ-associated species were modeled, three of which (Woodhouse’s Scrub Jay, Ash-throated Flycatcher, and Virginia’s Warbler) used all habitats. Four species (American Robin, Gray Vireo, Black-throated Gray Warbler, and Gray Flycatcher) were essentially absent from the old burn habitat, reflecting species-specific need for mature piñon or juniper trees and/or greater canopy cover. Conversely, birds that were present in the old burn habitat (including Virginia’s Warbler, Blue-gray Gnatcatcher, Woodhouse’s Scrub-jay, Ash-throated Flycatcher, and Spotted Towhee) are typically associated with habitat edges, high shrub cover, or cavity nests. Altered vegetation structure and bird habitat use in burned areas 25 years post-fire are evidence for enduring conversion to non-forest vegetation types. However, unburned refugia embedded in burned areas maintain forest attributes and support obligate bird communities, supporting ecological function and biological diversity.more » « less
-
Communities near the wildland urban interface (WUI) are exposed to a mix of three interconnected hazards (wildfire, flood, and mudslide), and understanding multi-hazard perceptions is critically important for emergency preparation and hazard mitigation—particularly given the WUI’s rapid expansion and intensifying environmental hazards. Based on a survey of residents living near recent burn scars in Southern California, we document cross-over effects in hazard perceptions, where resident experience with one hazard was associated with greater hazard rankings for other hazards. Additionally, for all three hazards analyzed we document perceptions of increasing hazard levels with increasing spatial scales (home, near-home, neighborhood, and community), providing evidence of spatial optimism, or the tendency to discount proximate hazards. This study stresses the importance of using a multi-hazard and multi-scale approach for understanding and responding to local level environmental hazards.more » « less
-
Tundra fires and surface subsidence increase spectral diversity on the Yukon–Kuskokwim Delta, AlaskaAbstract Tundra fires can dramatically influence plant species cover and abundance, organic layer depth, and the magnitude of seasonal permafrost thaw. However, knowledge of the impact of wildfire on short and long-term interactions between vegetation and permafrost thaw remains limited. Here, we evaluate the spatial and temporal interactions between wildfire disturbance and surface subsidence on a remotely derived proxy for species diversity (i.e. spectral diversity (SD)) of 16 fire scars within the Izaviknek and Kingaglia uplands of southwestern Alaska’s Yukon–Kuskokwim Delta with burn dates between 1971 and 2015. SD was calculated as the sum of squared spectral variance of pixel spectra from the mean spectra, within a plant community (analogous to alpha diversity), between plant communities (beta diversity), and across terrain composed of a mosaic of communities (gamma diversity). Surface subsidence was calculated from spaceborne interferometric synthetic aperture radar data from Sentinel-1. Results indicate the burn scars had consistently lower total gamma diversity and greater rates of subsidence than paired unburned reference areas, where both gamma diversity (R2= 0.74,p< 0.001) and relative subsidence (R2= 0.86,p< 0.001) decreased with the time since burn. Compared to older burn scars, young scars had higher gamma spectral diversities (0.013 and 0.005) and greater subsidence rates (−0.097 cm day−1and −0.053 cm day−1). Communities subsiding at higher rates had higher gamma diversities (R2= 0.81,p< 0.001). Results indicate that rates of post-fire vegetation succession are amplified by the thickening of active layers and surface subsidence that increases both spectral and species diversity over 15 years following fire. These results support the idea that SD may be used as a remotely sensed analog of species diversity, used to advance knowledge of the trajectories of plant community change in response to interacting arctic disturbance regimes.more » « less
An official website of the United States government
