skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Autonomous materials discovery and manufacturing (AMDM): A review and perspectives
This article presents an overview of the emerging themes in Autonomous Materials Discovery andManufacturing (AMDM). This interdisciplinary field is garnering a growing interest among the sci-entists and engineers in the materials and manufacturing domains as well as those in the ArtificialIntelligence (AI) and data sciences domains, and it offers immense research potential for the indus-trial systems engineering (ISE) and manufacturing fields. Although there are a few reviews relatedto this topic, they had focused exclusively on sequential experimentation techniques, AI/machinelearning applications, or materials synthesis processes. In contrast, this review treats AMDM as acyberphysical system, comprising an intelligent softwarebrainthat incorporates various computa-tional models and sequential experimentation strategies, and a hardwarebodythat integratesequipment platforms for materials synthesis with measurement and testing capabilities. Thisreview offers a balanced perspective of the software and the hardware components of an AMDMsystem, and discusses the current state-of-the-art and the emerging challenges at the nexus ofmanufacturing/materials sciences and AI/data sciences in this nascent, exciting area  more » « less
Award ID(s):
1849085
PAR ID:
10488816
Author(s) / Creator(s):
Publisher / Repository:
Taylor and Francis
Date Published:
Journal Name:
IISE Transactions
Volume:
55
Issue:
1
ISSN:
2472-5854
Page Range / eLocation ID:
75 to 93
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Autonomous robotic experimentation strategies are rapidly rising in use because, without the need for user intervention, they can efficiently and precisely converge onto optimal intrinsic and extrinsic synthesis conditions for a wide range of emerging materials. However, as the material syntheses become more complex, the meta-decisions of artificial intelligence (AI)-guided decision-making algorithms used in autonomous platforms become more important. In this work, a surrogate model is developed using data from over 1000 in-house conducted syntheses of metal halide perovskite quantum dots in a self-driven modular microfluidic material synthesizer. The model is designed to represent the global failure rate, unfeasible regions of the synthesis space, synthesis ground truth, and sampling noise of a real robotic material synthesis system with multiple output parameters (peak emission, emission linewidth, and quantum yield). With this model, over 150 AI-guided decision-making strategies within a single-period horizon reinforcement learning framework are automatically explored across more than 600 000 simulated experiments – the equivalent of 7.5 years of continuous robotic operation and 400 L of reagents – to identify the most effective methods for accelerated materials development with multiple objectives. Specifically, the structure and meta-decisions of an ensemble neural network-based material development strategy are investigated, which offers a favorable technique for intelligently and efficiently navigating a complex material synthesis space with multiple targets. The developed ensemble neural network-based decision-making algorithm enables more efficient material formulation optimization in a no prior information environment than well-established algorithms. 
    more » « less
  2. Integrating Artificial Intelligence (AI) techniques with remote sensing holds great potential for revolutionizing data analysis and applications in many domains of Earth sciences. This review paper synthesizes the existing literature on AI applications in remote sensing, consolidating and analyzing AI methodologies, outcomes, and limitations. The primary objectives are to identify research gaps, assess the effectiveness of AI approaches in practice, and highlight emerging trends and challenges. We explore diverse applications of AI in remote sensing, including image classification, land cover mapping, object detection, change detection, hyperspectral and radar data analysis, and data fusion. We present an overview of the remote sensing technologies, methods employed, and relevant use cases. We further explore challenges associated with practical AI in remote sensing, such as data quality and availability, model uncertainty and interpretability, and integration with domain expertise as well as potential solutions, advancements, and future directions. We provide a comprehensive overview for researchers, practitioners, and decision makers, informing future research and applications at the exciting intersection of AI and remote sensing. 
    more » « less
  3. Abstract Metal cation‐doped lead halide perovskite (LHP) quantum dots (QDs) with photoluminescence quantum yields (PLQYs) higher than unity, due to quantum cutting phenomena, are an important building block of the next‐generation renewable energy technologies. However, synthetic route exploration and development of the highest‐performing QDs for device applications remain challenging. In this work, Smart Dope is presented, which is a self‐driving fluidic lab (SDFL), for the accelerated synthesis space exploration and autonomous optimization of LHP QDs. Specifically, the multi‐cation doping of CsPbCl3QDs using a one‐pot high‐temperature synthesis chemistry is reported. Smart Dope continuously synthesizes multi‐cation‐doped CsPbCl3QDs using a high‐pressure gas‐liquid segmented flow format to enable continuous experimentation with minimal experimental noise at reaction temperatures up to 255°C. Smart Dope offers multiple functionalities, including accelerated mechanistic studies through digital twin QD synthesis modeling, closed‐loop autonomous optimization for accelerated QD synthetic route discovery, and on‐demand continuous manufacturing of high‐performing QDs. Through these developments, Smart Dope autonomously identifies the optimal synthetic route of Mn‐Yb co‐doped CsPbCl3QDs with a PLQY of 158%, which is the highest reported value for this class of QDs to date. Smart Dope illustrates the power of SDFLs in accelerating the discovery and development of emerging advanced energy materials. 
    more » « less
  4. Identifying the optimal formulation of emerging inorganic lead halide perovskite quantum dots (LHP QDs) with their vast colloidal synthesis universe and multiple synthesis/postsynthesis processing parameters is a challenging undertaking for material‐ and time‐intensive, batch synthesis strategies. Herein, a modular microfluidic synthesis strategy, integrated with an artificial intelligence (AI)‐guided decision‐making agent for intelligent navigation through the complex colloidal synthesis universe of LHP QDs with 10 individually controlled synthesis parameters and an accessible parameter space exceeding 2 × 107, is introduced. Utilizing the developed autonomous microfluidic experimentation strategy within a global learning framework, the optimal formulation of LHP QDs is rapidly identified through a two‐step colloidal synthesis and postsynthesis halide exchange reaction, for 10 different emission colors in less than 40 min per desired peak emission energy. Using two in‐series microfluidic reactors enables continuous bandgap engineering of LHP QDs via in‐line halide exchange reactions without the need for an intermediate washing step. Using an inert gas within a three‐phase flow format enables successful, self‐synchronized continuous delivery of halide salt precursor into moving droplets containing LHP QDs, resulting in accelerated closed‐loop formulation optimization and end‐to‐end continuous manufacturing of LHP QDs with desired optoelectronic properties. 
    more » « less
  5. Abstract In recent years, microfluidic technologies have emerged as a powerful approach for the advanced synthesis and rapid optimization of various solution‐processed nanomaterials, including semiconductor quantum dots and nanoplatelets, and metal plasmonic and reticular framework nanoparticles. These fluidic systems offer access to previously unattainable measurements and synthesis conditions at unparalleled efficiencies and sampling rates. Despite these advantages, microfluidic systems have yet to be extensively adopted by the colloidal nanomaterial community. To help bridge the gap, this progress report details the basic principles of microfluidic reactor design and performance, as well as the current state of online diagnostics and autonomous robotic experimentation strategies, toward the size, shape, and composition‐controlled synthesis of various colloidal nanomaterials. By discussing the application of fluidic platforms in recent high‐priority colloidal nanomaterial studies and their potential for integration with rapidly emerging artificial intelligence‐based decision‐making strategies, this report seeks to encourage interdisciplinary collaborations between microfluidic reactor engineers and colloidal nanomaterial chemists. Full convergence of these two research efforts offers significantly expedited and enhanced nanomaterial discovery, optimization, and manufacturing. 
    more » « less