skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Utilizing logistic regression to compare risk factors in disease modeling with imbalanced data: a case study in vitamin D and cancer incidence
Imbalanced data, a common challenge encountered in statistical analyses of clinical trial datasets and disease modeling, refers to the scenario where one class significantly outnumbers the other in a binary classification problem. This imbalance can lead to biased model performance, favoring the majority class, and affecting the understanding of the relative importance of predictive variables. Despite its prevalence, the existing literature lacks comprehensive studies that elucidate methodologies to handle imbalanced data effectively. In this study, we discuss the binary logistic model and its limitations when dealing with imbalanced data, as model performance tends to be biased towards the majority class. We propose a novel approach to addressing imbalanced data and apply it to publicly available data from the VITAL trial, a large-scale clinical trial that examines the effects of vitamin D and Omega-3 fatty acid to investigate the relationship between vitamin D and cancer incidence in sub-populations based on race/ethnicity and demographic factors such as body mass index (BMI), age, and sex. Our results demonstrate a significant improvement in model performance after our undersampling method is applied to the data set with respect to cancer incidence prediction. Both epidemiological and laboratory studies have suggested that vitamin D may lower the occurrence and death rate of cancer, but inconsistent and conflicting findings have been reported due to the difficulty of conducting large-scale clinical trials. We also utilize logistic regression within each ethnic sub-population to determine the impact of demographic factors on cancer incidence, with a particular focus on the role of vitamin D. This study provides a framework for using classification models to understand relative variable importance when dealing with imbalanced data.  more » « less
Award ID(s):
2150280
PAR ID:
10488837
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Oncology
Volume:
13
ISSN:
2234-943X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Graph neural networks (GNNs) have emerged as a powerful tool for modeling graph data due to their ability to learn a concise representation of the data by integrating the node attributes and link information in a principled fashion. However, despite their promise, there are several practical challenges that must be overcome to effectively use them for node classification problems. In particular, current approaches are vulnerable to different kinds of biases inherent in the graph data. First, if the class distribution is imbalanced, then the GNNs' loss function is biased towards classifying the majority class correctly rather than the minority class, which hurts the performance of the latter class. Second, due to homophily effect, the learned representation and subsequent downstream tasks may favor certain demographic groups over others when applied to social network data. To mitigate such biases, we propose a novel framework called Fairness-Aware Cost Sensitive Graph Convolutional Network (FACS-GCN) for classifying nodes in networks with skewed class distributions. Our approach combines a cost-sensitive exponential loss with an adversarial learning component to alleviate the ill-effects of both biases. The framework employs a stagewise additive modeling approach to ensure there is no significant loss in accuracy when imparting fairness into the GNN. Experimental results on 6 benchmark graph data demonstrate the effectiveness of FACS-GCN against comparable baseline methods in terms of promoting fairness while maintaining a high model accuracy on the majority of the datasets. 
    more » « less
  2. Heterogeneity among Alzheimer’s disease (AD) patients confounds clinical trial patient selection and therapeutic efficacy evaluation. This work defines separable AD clinical sub-populations using unsupervised machine learning. Clustering (t-SNE followed by k-means) of patient features and association rule mining (ARM) was performed on the ADNIMERGE dataset from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Patient sociodemographics, brain imaging, biomarkers, cognitive tests, and medication usage were included for analysis. Four AD clinical sub-populations were identified using between-cluster mean fold changes [cognitive performance, brain volume]: cluster-1 represented least severe disease [+17.3, +13.3]; cluster-0 [−4.6, +3.8] and cluster-3 [+10.8, −4.9] represented mid-severity sub-populations; cluster-2 represented most severe disease [−18.4, −8.4]. ARM assessed frequently occurring pharmacologic substances within the 4 sub-populations. No drug class was associated with the least severe AD (cluster-1), likely due to lesser antecedent disease. Anti-hyperlipidemia drugs associated with cluster-0 (mid-severity, higher volume). Interestingly, antioxidants vitamin C and E associated with cluster-3 (mid-severity, higher cognition). Anti-depressants like Zoloft associated with most severe disease (cluster-2). Vitamin D is protective for AD, but ARM identified significant underutilization across all AD sub-populations. Identification and feature characterization of four distinct AD sub-population “clusters” using standard clinical features enhances future clinical trial selection criteria and cross-study comparative analysis. 
    more » « less
  3. In the field of healthcare, electronic health records (EHR) serve as crucial training data for developing machine learning models for diagnosis, treatment, and the management of healthcare resources. However, medical datasets are often imbalanced in terms of sensitive attributes such as race/ethnicity, gender, and age. Machine learning models trained on class-imbalanced EHR datasets perform significantly worse in deployment for individuals of the minority classes compared to those from majority classes, which may lead to inequitable healthcare outcomes for minority groups. To address this challenge, we propose Minority Class Rebalancing through Augmentation by Generative modeling (MCRAGE), a novel approach to augment imbalanced datasets using samples generated by a deep generative model. The MCRAGE process involves training a Conditional Denoising Diffusion Probabilistic Model (CDDPM) capable of generating high-quality synthetic EHR samples from underrepresented classes. We use this synthetic data to augment the existing imbalanced dataset, resulting in a more balanced distribution across all classes, which can be used to train less biased downstream models. We measure the performance of MCRAGE versus alternative approaches using Accuracy, F1 score and AUROC of these downstream models. We provide theoretical justification for our method in terms of recent convergence results for DDPMs. 
    more » « less
  4. In many real-world classification applications such as fake news detection, the training data can be extremely imbalanced, which brings challenges to existing classifiers as the majority classes dominate the loss functions of classifiers. Oversampling techniques such as SMOTE are effective approaches to tackle the class imbalance problem by producing more synthetic minority samples. Despite their success, the majority of existing oversampling methods only consider local data distributions when generating minority samples, which can result in noisy minority samples that do not fit global data distributions or interleave with majority classes. Hence, in this paper, we study the class imbalance problem by simultaneously exploring local and global data information since: (i) the local data distribution could give detailed information for generating minority samples; and (ii) the global data distribution could provide guidance to avoid generating outliers or samples that interleave with majority classes. Specifically, we propose a novel framework GL-GAN, which leverages the SMOTE method to explore local distribution in a learned latent space and employs GAN to capture the global information, so that synthetic minority samples can be generated under even extremely imbalanced scenarios. Experimental results on diverse real data sets demonstrate the effectiveness of our GL-GAN framework in producing realistic and discriminative minority samples for improving the classification performance of various classifiers on imbalanced training data. Our code is available at https://github.com/wentao-repo/GL-GAN. 
    more » « less
  5. Breast cancer is the leading cancer affecting women globally. Despite deep learning models making significant strides in diagnosing and treating this disease, ensuring fair outcomes across diverse populations presents a challenge, particularly when certain demographic groups are underrepresented in training datasets. Addressing the fairness of AI models across varied demographic backgrounds is crucial. This study analyzes demographic representation within the publicly accessible Emory Breast Imaging Dataset (EMBED), which includes de-identified mammography and clinical data. We spotlight the data disparities among racial and ethnic groups and assess the biases in mammography image classification models trained on this dataset, specifically ResNet-50 and Swin Transformer V2. Our evaluation of classification accuracies across these groups reveals significant variations in model performance, highlighting concerns regarding the fairness of AI diagnostic tools. This paper emphasizes the imperative need for fairness in AI and suggests directions for future research aimed at increasing the inclusiveness and dependability of these technologies in healthcare settings. Code is available at: https://github.com/kuanhuang0624/EMBEDFairModels. 
    more » « less