skip to main content


This content will become publicly available on November 1, 2024

Title: Memory ability and retention performance relate differentially to sleep depth and spindle type
Temporal interactions between non-rapid eye movement (NREM) sleep rhythms especially the coupling between cortical slow oscillations (SO, ∼1 Hz) and thalamic spindles (∼12 Hz) have been proposed to contribute to multi-regional interactions crucial for memory processing and cognitive ability. We investigated relationships between NREM sleep depth, sleep spindles and SO-spindle coupling regarding memory ability and memory consolidation in healthy humans. Findings underscore the functional relevance of spindle dynamics (slow versus fast), SO-phase, and most importantly NREM sleep depth for cognitive processing. Cross-frequency coupling analyses demonstrated stronger precise temporal coordination of slow spindles to SO down-state in N2 for subjects with higher general memory ability. A GLM model underscored this relationship, and furthermore that fast spindle properties were predictive of overnight memory consolidation. Our results suggest cognitive fingerprints dependent on conjoint fine-tuned SO-spindle temporal coupling, spindle properties, and brain sleep state.  more » « less
Award ID(s):
1724405
NSF-PAR ID:
10488925
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
iScience
Volume:
26
Issue:
11
ISSN:
2589-0042
Page Range / eLocation ID:
108154
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cymbalyuk, Gennady S. (Ed.)

    Cortical slow oscillations (SOs) and thalamocortical sleep spindles are two prominent EEG rhythms of slow wave sleep. These EEG rhythms play an essential role in memory consolidation. In humans, sleep spindles are categorized into slow spindles (8–12 Hz) and fast spindles (12–16 Hz), with different properties. Slow spindles that couple with the up-to-down phase of the SO require more experimental and computational investigation to disclose their origin, functional relevance and most importantly their relation with SOs regarding memory consolidation. To examine slow spindles, we propose a biophysical thalamocortical model with two independent thalamic networks (one for slow and the other for fast spindles). Our modeling results show that fast spindles lead to faster cortical cell firing, and subsequently increase the amplitude of the cortical local field potential (LFP) during the SO down-to-up phase. Slow spindles also facilitate cortical cell firing, but the response is slower, thereby increasing the cortical LFP amplitude later, at the SO up-to-down phase of the SO cycle. Neither the SO rhythm nor the duration of the SO down state is affected by slow spindle activity. Furthermore, at a more hyperpolarized membrane potential level of fast thalamic subnetwork cells, the activity of fast spindles decreases, while the slow spindles activity increases. Together, our model results suggest that slow spindles may facilitate the initiation of the following SO cycle, without however affecting expression of the SO Up and Down states.

     
    more » « less
  2. Abstract Study Objectives Synchronization of neural activity within local networks and between brain regions is a major contributor to rhythmic field potentials such as the EEG. On the other hand, dynamic changes in microstructure and activity are reflected in the EEG, for instance slow oscillation (SO) slope can reflect synaptic strength. SO-spindle coupling is a measure for neural communication. It was previously associated with memory consolidation, but also shown to reveal strong interindividual differences. In studies, weak electric current stimulation has modulated brain rhythms and memory retention. Here, we investigate whether SO-spindle coupling and SO slope during baseline sleep are associated with (predictive of) stimulation efficacy on retention performance. Methods Twenty-five healthy subjects participated in three experimental sessions. Sleep-associated memory consolidation was measured in two sessions, in one anodal transcranial direct current stimulation oscillating at subjects individual SO frequency (so-tDCS) was applied during nocturnal sleep. The third session was without a learning task (baseline sleep). The dependence on SO-spindle coupling and SO-slope during baseline sleep of so-tDCS efficacy on retention performance were investigated. Results Stimulation efficacy on overnight retention of declarative memories was associated with nesting of slow spindles to SO trough in deep nonrapid eye movement baseline sleep. Steepness and direction of SO slope in baseline sleep were features indicative for stimulation efficacy. Conclusions Findings underscore a functional relevance of activity during the SO up-to-down state transition for memory consolidation and provide support for distinct consolidation mechanisms for types of declarative memories. 
    more » « less
  3. Abstract

    Brain rhythms of sleep reflect neuronal activity underlying sleep‐associated memory consolidation. The modulation of brain rhythms, such as the sleep slow oscillation (SO), is used both to investigate neurophysiological mechanisms as well as to measure the impact of sleep on presumed functional correlates. Previously, closed‐loop acoustic stimulation in humans targeted to the SO Up‐state successfully enhanced the slow oscillation rhythm and phase‐dependent spindle activity, although effects on memory retention have varied. Here, we aim to disclose relations between stimulation‐induced hippocampo‐thalamo‐cortical activity and retention performance on a hippocampus‐dependent object‐place recognition task in mice by applying acoustic stimulation at four estimated SO phases compared to sham condition. Across the 3‐h retention interval at the beginning of the light phase closed‐loop stimulation failed to improve retention significantly over sham. However, retention during SO Up‐state stimulation was significantly higher than for another SO phase. At all SO phases, acoustic stimulation was accompanied by a sharp increase in ripple activity followed by about a second‐long suppression of hippocampal sharp wave ripple and longer maintained suppression of thalamo‐cortical spindle activity. Importantly, dynamics of SO‐coupled hippocampal ripple activity distinguished SOUp‐state stimulation. Non‐rapid eye movement (NREM) sleep was not impacted by stimulation, yet preREM sleep duration was effected. Results reveal the complex effect of stimulation on the brain dynamics and support the use of closed‐loop acoustic stimulation in mice to investigate the inter‐regional mechanisms underlying memory consolidation.

     
    more » « less
  4. Abstract

    Epilepsy, a neurological disorder characterized by recurrent seizures, is known to be associated with impaired sleep and memory. Although the specific mechanisms underlying these impairments are uncertain, the known role of sleep in memory consolidation suggests a potential relationship may exist between seizure activity, disrupted sleep, and memory impairment. A possible mediator in this relationship is the sleep spindle, the characteristic electroencephalographic (EEG) feature of non‐rapid‐eye‐movement (NREM) sleep in humans and other mammals. Growing evidence supports the idea that sleep spindles, having thalamic origin, may mediate the process of long‐term memory storage and plasticity by generating neuronal conditions that favor these processes. To study this potential relationship, a single model in which memory, sleep, and epilepsy can be simultaneously observed is of necessity. Rodent models of epilepsy appear to fulfill this requirement. Not only do rodents express both sleep spindles and seizure‐induced sleep disruptions, but they also allow researchers to invasively study neurobiological processes both pre‐ and post‐ epileptic onset via the artificial induction of epilepsy (a practice that cannot be carried out in human subjects). However, the degree to which sleep architecture differs between rodents and humans makes direct comparisons between the two challenging. This review addresses these challenges and concludes that rodent sleep studies are useful in observing the functional roles of sleep and how they are affected by epilepsy.

     
    more » « less
  5. Abstract

    Napping benefits long-term memory formation and is a tool many individuals use to improve daytime functioning. Despite its potential advantages, approximately 47% of people in the United States eschew napping. The goal of this study was to determine whether people who endorse napping at least once a week (nap+) show differences in nap outcomes, including nap-dependent memory consolidation, compared with people who rarely or never nap (nap−). Additionally, we tested whether four weeks of nap practice or restriction would change sleep and performance profiles. Using a perceptual learning task, we found that napping enhanced performance to a greater degree in nap+ compared with nap− individuals (at baseline). Additionally, performance change was associated with different electrophysiological sleep features in each group. In the nap+ group, spindle density was positively correlated with performance improvement, an effect specific to spindles in the hemisphere contralateral to the trained visual field. In the nap− group, slow oscillatory power (0.5–1 Hz) was correlated with performance. Surprisingly, no changes to performance or brain activity during sleep emerged after four weeks of nap practice or restriction. These results suggest that individual differences may impact the potential benefits of napping on performance and the ability to become a better napper.

     
    more » « less