skip to main content


This content will become publicly available on November 1, 2024

Title: Enhanced T C in SrRuO3/DyScO3(110) thin films with high residual resistivity ratio

Epitaxial untwinned SrRuO3 thin films were grown on (110)-oriented DyScO3 substrates by molecular-beam epitaxy. We report an exceptional sample with a residual resistivity ratio (RRR), ρ [300 K]/ρ [4 K] of 205 and a ferromagnetic Curie temperature, TC, of 168.3 K. We compare the properties of this sample to other SrRuO3 films grown on DyScO3(110) with RRRs ranging from 8.8 to 205, and also compare it to the best reported bulk single crystal of SrRuO3. We determine that SrRuO3 thin films grown on DyScO3(110) have an enhanced TC as long as the RRR of the thin film is above a minimum electrical quality threshold. This RRR threshold is about 20 for SrRuO3. Films with lower RRR exhibit TCs that are significantly depressed from the intrinsic strain-enhanced value.

 
more » « less
Award ID(s):
2039380
NSF-PAR ID:
10489001
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
APL Materials
Volume:
11
Issue:
11
ISSN:
2166-532X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The observation of characteristic A1g and E2g1 peaks, at around 408 and 382 cm−1, respectively, in Raman spectroscopy is considered the evidence of 2H-structured MoS2, probably the most extensively studied transition-metal dichalcogenide. Here, using a combination of x-ray diffraction, x-ray photoelectron spectroscopy, and resonant Raman spectroscopy, we show that the detection of A1g and E2g1 modes in Raman spectra alone may not necessarily imply the presence of MoS2. A series of Mo–S films, ≈ 20-nm-thick, are grown on single-crystalline Al2O3(0001) substrates at 1073 K as a function of H2S partial pressure, pH2S (= 0, 0.01%, 0.1%, and 1% of total pressure) via ultra-high vacuum dc magnetron sputtering of a Mo target in 20 m Torr (2.67 Pa) Ar/H2S gas mixtures. In pure Ar discharges and with pH2S up to 0.1%, i.e., pH2S ≤ 2.67 × 10−3 Pa, we obtain body centered cubic (bcc), 110-textured films with lattice parameter a increasing from 0.3148 nm (in pure Ar) to 0.3151 nm (at pH2S = 2.67 × 10−4 Pa), and 0.3170 nm (at pH2S = 2.67 × 10−3 Pa), which we attribute to increased incorporation of S in the Mo lattice. With 1% H2S, i.e., pH2S = 2.67 × 10−2 Pa, we obtain 000l oriented 2H-structured MoS2.0±0.1 layers. Raman spectra of the thin films grown using 0.1% (and 1%) H2S show peaks at around 412 (408) and 380 cm−1 (382 cm−1), which could be interpreted as A1g and E2g1 Raman modes for 2H-MoS2. By comparing the Raman spectra of MoS2.0±0.1 and Mo:S thin films, we identify differences in A1g and E2g1 peak positions and intensities of defect-sensitive peaks relative to the A1g peaks that can help distinguish pure MoS2 from non-stoichiometric MoS2−x and multiphase Mo:S materials.

     
    more » « less
  2. Recent work has demonstrated a low-temperature route to fabricating mixed ionic/electronic conducting (MIEC) thin films with enhanced oxygen exchange kinetics by crystallizing amorphous-grown thin films under mild temperatures, eluding conditions for deleterious A-site cation surface segregation. Yet, the complex, multiscale chemical and structural changes during MIEC crystallization and their implications for the electrical properties remain relatively unexplored. In this work, micro-structural and atomic-scale structural and chemical changes in crystallizing SrTi 0.65 Fe 0.35 O 3− δ thin films on insulating (0001)-oriented Al 2 O 3 substrates are observed and correlated to changes in the in-plane electrical conductivity, measured in situ by ac impedance spectroscopy. Synchrotron X-ray absorption spectroscopy at the Fe and Ti K-edges gives direct evidence of oxidation occurring with the onset of crystallization and insight into the atomic-scale structural changes driven by the chemical changes. The observed oxidation, increase in B-site polyhedra symmetry, and alignment of neighboring B-site cation coordination units demonstrate increases in both hole concentration and mobility, thus underpinning the measured increase of in-plane conductivity by over two orders of magnitude during crystallization. High resolution transmission electron microscopy and spectroscopy of films at various degrees of crystallinity reveal compositional uniformity with extensive nano-porosity in the crystallized films, consistent with solid phase contraction expected from both oxidation and crystallization. We suggest that this chemo-mechanically driven dynamic nano-structuring is an additional contributor to the observed electrical behavior. By the point that the films become ∼60% crystalline (according to X-ray diffraction), the conductivity reaches the value of dense, fully crystalline films. Given the resulting high electronic conductivity, this low-temperature processing route leading to semi-crystalline hierarchical films exhibits promise for developing high performance MIECs for low-to-intermediate temperature applications. 
    more » « less
  3. null (Ed.)
    Successful implementation of hot carrier solar cells requires preserving high carrier temperature as carriers migrate through the active layer. Here, we demonstrated that addition of alkali cations in hybrid organic-inorganic lead halide perovskites led to substantially elevated carrier temperature, reduced threshold for phonon bottleneck, and enhanced hot carrier transport. The synergetic effects from the Rb, Cs, and K cations result in ~900 K increase in the effective carrier temperature at a carrier density around 10 18 cm −3 with an excitation 1.45 eV above the bandgap. In the doped thin films, the protected hot carriers migrate 100 s of nanometers longer than the undoped sample as imaged by ultrafast microscopy. We attributed these improvements to the relaxation of lattice strain and passivation of halide vacancies by alkali cations based on x-ray structural characterizations and first principles calculations. 
    more » « less
  4. Epitaxial ScxAl1−xN thin films of ∼100 nm thickness grown on metal polar GaN substrates are found to exhibit significantly enhanced relative dielectric permittivity (εr) values relative to AlN. εrvalues of ∼17–21 for Sc mole fractions of 17%–25% ( x = 0.17–0.25) measured electrically by capacitance–voltage measurements indicate that ScxAl1−xN has the largest relative dielectric permittivity of any existing nitride material. Since epitaxial ScxAl1−xN layers deposited on GaN also exhibit large polarization discontinuity, the heterojunction can exploit the in situ high-K dielectric property to extend transistor operation for power electronics and high-speed microwave applications.

     
    more » « less
  5. Abstract

    We report the pulsed‐laser deposition of epitaxial double‐perovskite Bi2FeCrO6(BFCO) films on the (001)‐, (110), and (111)‐oriented single‐crystal SrTiO3substrates. All of the BFCO films with various orientations show theandsuperlattice‐diffraction peaks. The intensity ratios between the‐superlattice and the main 111‐diffraction peak can be tailored by simply adjusting the laser repetition rate and substrate temperature, reaching up to 4.4%. However, both optical absorption spectra and magnetic measurements evidence that the strong superlattice peaks are not correlated with theB‐site Fe3+/Cr3+cation ordering. Instead, the epitaxial (111)‐oriented Bi2FeCrO6films show an enhanced remanent polarization of 92 μC/cm2at 10 K, much larger than the predicted values by density‐functional theory calculations. Positive‐up‐negative‐down (PUND) measurements with a time interval of 10 μs further support these observations. Therefore, our experimental results reveal that the strong superlattice peaks may come fromA‐ orB‐site cation shifts along the pseudo‐cubic [111] direction, which further enhance the ferroelectric polarization of the BFCO thin films.

     
    more » « less