skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analysis of Direct Recycling Methods for Retired Lithium-ion Batteries from Electric Vehicles
The rapid expansion of electric vehicle (EV) fleet calls for large number of lithium-ion batteries to be recycled at their end-of-life. Various recycling methods have been developed or under development to recover the high-value materials from retired lithium-ion batteries. Amongst these methods, direct recycling techniques have been developed and reported to recycle battery materials for reuse in new battery manufacturing since the electrochemical properties of the recycled materials can be fully recovered to the same level of pristine materials. In literature, innovative sintering processes have been developed to recover the composition and crystal structure of spent cathode materials; hydrothermal regeneration processes have been reported to regenerate the spent cathode materials in the solvents at a moderate temperature, followed by the high-temperature short annealing process. The regenerated cathode materials show the same specific capacity and cycling performance as those of pristine materials. The electrochemical regeneration method is applied to fully recover the electrochemical performance of cathode material with stable crystal structure. While the direct recycling techniques are still under development, their future applications in industry are still not clear. This study aims to classify and summarize state-of-the-art of the direct recycling methods, and evaluate the regenerated cathode materials’ performance and the application potential to be used for manufacturing of new lithium-ion batteries in future. The results will help increase understanding of the direct recycling technologies and facilitate the associated R&D for future industrial scaling-up of direct recycling processes for retired lithium ion batteries from electric vehicles.  more » « less
Award ID(s):
2101129
PAR ID:
10489080
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Procedia CIRP
Volume:
116
Issue:
C
ISSN:
2212-8271
Page Range / eLocation ID:
702 to 707
Subject(s) / Keyword(s):
Spent lithium-ion batteries Cathode materials recycling methods Electric vehicles
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Direct recycling methods offer a non‐destructive way to regenerate degraded cathode material. The materials to be recycled in the industry typically constitute a mixture of various cathode materials extracted from a wide variety of retired lithium‐ion batteries. Bridging the gap, a direct recycling method using a low‐temperature sintering process is reported. The degraded cathode mixture of LMO (LiMn2O4) and NMC (LiNiCoMnO2) extracted from retired LIBs was successfully regenerated by the proposed method with a low sintering temperature of 300°C for 4 h. Advanced characterization tools were utilized to validate the full recovery of the crystal structure in the degraded cathode mixture. After regeneration, LMO/NMC cathode mixture shows an initial capacity of 144.0 mAh g−1and a capacity retention of 95.1% at 0.5 C for 250 cycles. The regenerated cathode mixture also shows a capacity of 83 mAh g−1at 2 C, which is slightly higher compared to the pristine material. As a result of the direct recycling process, the electrochemical performance of degraded cathode mixture is recovered to the same level as the pristine material. Life‐cycle assessment results emphasized a 90.4% reduction in energy consumption and a 51% reduction in PM2.5 emissions for lithium‐ion battery packs using a direct recycled cathode mixture compared to the pristine material. 
    more » « less
  2. Reusing valuable cathode materials from end-of-life (EOL) Li-ion batteries can help decrease dependence on mining of raw materials for producing cathodes, while preventing commodity prices from rising. This study employed chemically delithiated cathodes that are analogous to spent cathodes but free of impurities to fundamentally elucidate the effectiveness of cathode regeneration. Two lithium cobalt oxides (LCOs) at different degrees of delithiation were synthesized via chemical delithiation. Their material and electrochemical characteristics were systematically compared before and after hydrothermal-based cathode regeneration. The material and electrochemical characteristics were further evaluated and compared with those of pristine LCO. Both LCOs, at high and low states of health (SOH), recovered their reversible capacity and cycle performance comparable to those of pristine LCO. However, the high-rate performance (2C) of the regenerated LCOs was not comparable to that of pristine LCO. The slight increase in cell resistance of the regenerated LCOs was attributed to their lower high-rate performance, which was identified as a key challenge of cathode regeneration. Our study provides valuable insights into the effectiveness of cathode regeneration by elucidating the process underlying regeneration of disordered Li-deficient LCOs at different levels of SOH. 
    more » « less
  3. Direct recycling of lithium ion batteries from electric vehicles aims to close the loop of battery manufacturing. This study presents a novel process-based life cycle assessment model for studying the environmental impacts associated with the direct recycling for closed-loop production of lithium ion battery relative to the conventional open-loop battery manufacturing. A 66 kWh NMC-graphite battery pack is analyzed using directly recycled NMC and graphite for the closed-loop manufacturing. The results show that the closed-loop manufacturing via direct recycling can reduce environmental impacts by up to 54% over the conventional open-loop manufacturing of lithium ion battery for electric vehicles. 
    more » « less
  4. Cathodes of lithium-ion batteries (LIBs) significantly impact the environmental footprint, cost, and energy performance of the battery-pack. Hence, sustainable production of Li-ion battery cathodes is critically required for ensuring cost-effectiveness, environmental benignity, consumer friendliness, and social justice. Battery chemistry largely determines individual cell performance as well as the battery pack cost and life cycle greenhouse gas emission. Continuous manufacturing platforms improve production efficiency in terms of product yield, quality and cost. Spent-battery recycling ensures the circular economy of critical elements that are required for cathode production. Innovations in fast-charging LIBs are particularly promising for sustainable e-mobility with a reduced carbon footprint. This article provides an overview of these research directions, emphasizing strategies for low-cobalt cathode development, recycling processes, continuous production and improvement in fast-charging capability. 
    more » « less
  5. Abstract Sustainable battery production is a major challenge for the future of electrification with the rise in battery production leading to a massive increase in demand for battery cathode materials. Needed are environmentally responsible ways to recycle used cathodes into new cathodes to create a circular economy for batteries. While some battery recycling and recovery techniques for battery components are developed, they can involve costly and environmentally impactful multi‐step processes. This work demonstrates for the first time the simultaneous dissolution and electrochemical deposition of Li‐ion transition metal oxide cathodes, providing a path to directly fabricate new battery cathodes from old battery cathodes. The LiCoO2cathodes formed via this recycling process exhibit near‐theoretical capacities, are binder and additive‐free, and are phase pure. Technoeconomic and life cycle analyses show the simultaneous dissolution and electrochemical deposition process is less costly and environmentally harmful than traditional pyrometallurgical, hydrometallurgical, and direct recycling methods. This method has major potential impacts and advantages on the industrial scale as it creates battery materials in fewer steps at a lower cost and with a lower environmental impact than current battery recycling methods. 
    more » « less