skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Observing a Seismic Cycle at Sea
Scientists organized a trio of expeditions to document the buildup of stress leading to a large earthquake on a seafloor fault, developing innovations for successful seagoing research in the process.  more » « less
Award ID(s):
1832830 2128784 1832868
PAR ID:
10489172
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Eos
Date Published:
Journal Name:
Eos
Volume:
104
ISSN:
2324-9250
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. AbstractThe relative effectiveness of reflection either through student generation of contrasting cases or through provided contrasting cases is not well‐established for adult learners. This paper presents a classroom study to investigate this comparison in a college level Computer Science (CS) course where groups of students worked collaboratively to design database access strategies. Forty‐four teams were randomly assigned to three reflection conditions ([GEN] directive to generate a contrasting case to the student solution and evaluate their trade‐offs in light of the principle, [CONT] directive to compare the student solution with a provided contrasting case and evaluate their trade‐offs in light of a principle, and [NSI] a control condition with a non‐specific directive for reflection evaluating the student solution in light of a principle). In the CONT condition, as an illustration of the use of LLMs to exemplify knowledge transformation beyond knowledge construction in the generation of an automated contribution to a collaborative learning discussion, an LLM generated a contrasting case to a group's solution to exemplify application of an alternative problem solving strategy in a way that highlighted the contrast by keeping many concrete details the same as those the group had most recently collaboratively constructed. While there was no main effect of condition on learning based on a content test, low‐pretest student learned more from CONT than GEN, with NSI not distinguishable from the other two, while high‐pretest students learned marginally more from the GEN condition than the CONT condition, with NSI not distinguishable from the other two. Practitioner notesWhat is already known about this topicReflection during or even in place of computer programming is beneficial for learning of principles for advanced computer science when the principles are new to students.Generation of contrasting cases and comparing contrasting cases have both been demonstrated to be effective as opportunities to learn from reflection in some contexts, though questions remain about ideal applicability conditions for adult learners.Intelligent conversational agents can be used effectively to deliver stimuli for reflection during collaborative learning, though room for improvement remains, which provides an opportunity to demonstrate the potential positive contribution of large language models (LLMs).What this paper addsThe study contributes new knowledge related to the differences in applicability conditions between generation of contrasting cases and comparison across provided contrasting cases for adult learning.The paper presents an application of LLMs as a tool to provide contrasting cases tailored to the details of actual student solutions.The study provides evidence from a classroom intervention study for positive impact on student learning of an LLM‐enabled intervention.Implications for practice and/or policyAdvanced computer science curricula should make substantial room for reflection alongside problem solving.Instructors should provide reflection opportunities for students tailored to their level of prior knowledge.Instructors would benefit from training to use LLMs as tools for providing effective contrasting cases, especially for low‐prior‐knowledge students. 
    more » « less
  2. Abstract Fluorescence fluctuation spectroscopy (FFS) encompasses a bevy of techniques that involve analyzing fluorescence intensity fluctuations occurring due to fluorescently labeled molecules diffusing in and out of a microscope's focal region. Statistical analysis of these fluctuations may reveal the oligomerization (i.e., association) state of said molecules. We have recently developed a new FFS‐based method, termed Two‐Dimensional Fluorescence Intensity Fluctuation (2D FIF) spectrometry, which provides quantitative information on the size and stability of protein oligomers as a function of receptor concentration. This article describes protocols for employing FIF spectrometry to quantify the oligomerization of a membrane protein of interest, with specific instructions regarding cell preparation, image acquisition, and analysis of images given in detail. Application of the FIF Spectrometry Suite, a software package designed for applying FIF analysis on fluorescence images, is emphasized in the protocol. Also discussed in detail is the identification, removal, and/or analysis of inhomogeneous regions of the membrane that appear as bright spots. The 2D FIF approach is particularly suited to assess the effects of agonists and antagonists on the oligomeric size of membrane receptors of interest. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Preparation of live cells expressing protein constructs Basic Protocol 2: Image acquisition and noise correction Basic Protocol 3: Drawing and segmenting regions of interest Basic Protocol 4: Calculating the molecular brightness and concentration of individual image segments Basic Protocol 5: Combining data subsets using a manual procedure (Optional) Alternate Protocol 1: Combining data subsets using the advanced FIF spectrometry suite (Optional; alternative to Basic Protocol 5) Basic Protocol 6: Performing meta‐analysis of brightness spectrograms Alternate Protocol 2: Performing meta‐analysis of brightness spectrograms (alternative to Basic Protocol 6) Basic Protocol 7: Spot extraction and analysis using a manual procedure or by writing a program (Optional) Alternate Protocol 3: Automated spot extraction and analysis (Optional; alternative to Protocol 7) Support Protocol: Monomeric brightness determination 
    more » « less
  3. Abstract We applied an integrative taxonomic framework to evaluate the systematics of the Neotropical Black-and-white Becard (Pachyramphus albogriseusSclater 1857). Combining phylogenomic (ultraconserved elements), morphological, and vocalization data, we confirmed that this species is polyphyletic; some individuals form a clade sister to P. polychopterus and should be afforded species rank as P. salviniRichmond 1899 (Slender-billed Becard), whereas the remaining subspecies of P. albogriseus (Broad-banded Becard) are sister to P. major. We found that P. salvini differs from P. albogriseus in song, color of the lores, wing-bar width, body size, and bill width. Whereas P. albogriseus occurs in montane forest in Costa Rica and Panama (ssp. ornatus) and along the eastern slope of the Andes from northern Venezuela to southern Peru (ssp. albogriseus), P. salvini is found in the lowlands from Pacific Colombia south to northwest Peru and in the Río Marañón drainage. The latter also occurs, possibly only seasonally, along the eastern slope of the Andes, where the two species’ ranges approach closely. We treat P. a. guayaquilensisZimmer 1936 as a junior synonym of P. salviniRichmond 1899, and P. a. coronatusPhelps and Phelps 1953 as a junior synonym of P. a. albogriseusSclater 1857. This study provides a striking example of a major problem for comparative biology: underestimated and mischaracterized diversity. We argue that there are likely many more cases like this awaiting discovery. 
    more » « less
  4. The data provided here accompany the publication "Drought Characterization with GPS: Insights into Groundwater and Reservoir Storage in California" [Young et al., (2024)] which is currently under review with Water Resources Research. (as of 28 May 2024)Please refer to the manuscript and its supplemental materials for full details. (A link will be appended following publication)File formatting information is listed below, followed by a sub-section of the text describing the Geodetic Drought Index Calculation. The longitude, latitude, and label for grid points are provided in the file "loading_grid_lon_lat".Time series for each Geodetic Drought Index (GDI) time scale are provided within "GDI_time_series.zip".The included time scales are for 00- (daily), 1-, 3-, 6-, 12- 18- 24-, 36-, and 48-month GDI solutions.Files are formatted following...Title: "grid point label L****"_"time scale"_monthFile Format: ["decimal date" "GDI value"]Gridded, epoch-by-epoch, solutions for each time scale are provided within "GDI_grids.zip".Files are formatted following...Title: GDI_"decimal date"_"time scale"_monthFile Format: ["longitude" "latitude" "GDI value" "grid point label L****"]2.2 GEODETIC DROUGHT INDEX CALCULATION We develop the GDI following Vicente-Serrano et al. (2010) and Tang et al. (2023), such that the GDI mimics the derivation of the SPEI, and utilize the log-logistic distribution (further details below). While we apply hydrologic load estimates derived from GPS displacements as the input for this GDI (Figure 1a-d), we note that alternate geodetic drought indices could be derived using other types of geodetic observations, such as InSAR, gravity, strain, or a combination thereof. Therefore, the GDI is a generalizable drought index framework. A key benefit of the SPEI is that it is a multi-scale index, allowing the identification of droughts which occur across different time scales. For example, flash droughts (Otkin et al., 2018), which may develop over the period of a few weeks, and persistent droughts (>18 months), may not be observed or fully quantified in a uni-scale drought index framework. However, by adopting a multi-scale approach these signals can be better identified (Vicente-Serrano et al., 2010). Similarly, in the case of this GPS-based GDI, hydrologic drought signals are expected to develop at time scales that are both characteristic to the drought, as well as the source of the load variation (i.e., groundwater versus surface water and their respective drainage basin/aquifer characteristics). Thus, to test a range of time scales, the TWS time series are summarized with a retrospective rolling average window of D (daily with no averaging), 1, 3, 6, 12, 18, 24, 36, and 48-months width (where one month equals 30.44 days). From these time-scale averaged time series, representative compilation window load distributions are identified for each epoch. The compilation window distributions include all dates that range ±15 days from the epoch in question per year. This allows a characterization of the estimated loads for each day relative to all past/future loads near that day, in order to bolster the sample size and provide more robust parametric estimates [similar to Ford et al., (2016)]; this is a key difference between our GDI derivation and that presented by Tang et al. (2023). Figure 1d illustrates the representative distribution for 01 December of each year at the grid cell co-located with GPS station P349 for the daily TWS solution. Here all epochs between between 16 November and 16 December of each year (red dots), are compiled to form the distribution presented in Figure 1e. This approach allows inter-annual variability in the phase and amplitude of the signal to be retained (which is largely driven by variation in the hydrologic cycle), while removing the primary annual and semi-annual signals. Solutions converge for compilation windows >±5 days, and show a minor increase in scatter of the GDI time series for windows of ±3-4 days (below which instability becomes more prevalent). To ensure robust characterization of drought characteristics, we opt for an extended ±15-day compilation window. While Tang et al. (2023) found the log-logistic distribution to be unstable and opted for a normal distribution, we find that, by using the extended compiled distribution, the solutions are stable with negligible differences compared to the use of a normal distribution. Thus, to remain aligned with the SPEI solution, we retain the three-parameter log-logistic distribution to characterize the anomalies. Probability weighted moments for the log-logistic distribution are calculated following Singh et al., (1993) and Vicente-Serrano et al., (2010). The individual moments are calculated following Equation 3. These are then used to calculate the L-moments for shape (), scale (), and location () of the three-parameter log-logistic distribution (Equations 4 – 6). The probability density function (PDF) and the cumulative distribution function (CDF) are then calculated following Equations 7 and 8, respectively. The inverse Gaussian function is used to transform the CDF from estimates of the parametric sample quantiles to standard normal index values that represent the magnitude of the standardized anomaly. Here, positive/negative values represent greater/lower than normal hydrologic storage. Thus, an index value of -1 indicates that the estimated load is approximately one standard deviation dryer than the expected average load on that epoch. *Equations can be found in the main text. 
    more » « less
  5. Background. Simulation has revolutionized teaching and learning. However, traditional manikins are limited in their ability to exhibit emotions, movements, and interactive eye gaze. As a result, students struggle with immersion and may be unable to authentically relate to the patient. Intervention. We developed a new type of patient simulator called the Physical-Virtual Patients (PVP) which combines the physicality of manikins with the richness of dynamic visuals. The PVP uses spatial Augmented Reality to rear project dynamic imagery (e.g., facial expressions, ptosis, pupil reactions) on a semi-transparent physical shell. The shell occupies space and matches the dimensions of a human head. Methods. We compared two groups of third semester nursing students (N=59) from a baccalaureate program using a between-participant design, one group interacting with a traditional high-fidelity manikin versus a more realistic PVP head. The learners had to perform a neurological assessment. We measured authenticity, urgency, and learning. Results. Learners had a more realistic encounter with the PVP patient (p=0.046), they were more engaged with the PVP condition compared to the manikin in terms of authenticity of encounter and cognitive strategies. The PVP provoked a higher sense of urgency (p=0.002). There was increased learning for the PVP group compared to the manikin group on the pre and post-simulation scores (p=0.027). Conclusion. The realism of the visuals in the PVP increases authenticity and engagement which results in a greater sense of urgency and overall learning. 
    more » « less