skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neurological Assessment Using a Physical-Virtual Patient (PVP)
Background. Simulation has revolutionized teaching and learning. However, traditional manikins are limited in their ability to exhibit emotions, movements, and interactive eye gaze. As a result, students struggle with immersion and may be unable to authentically relate to the patient. Intervention. We developed a new type of patient simulator called the Physical-Virtual Patients (PVP) which combines the physicality of manikins with the richness of dynamic visuals. The PVP uses spatial Augmented Reality to rear project dynamic imagery (e.g., facial expressions, ptosis, pupil reactions) on a semi-transparent physical shell. The shell occupies space and matches the dimensions of a human head. Methods. We compared two groups of third semester nursing students (N=59) from a baccalaureate program using a between-participant design, one group interacting with a traditional high-fidelity manikin versus a more realistic PVP head. The learners had to perform a neurological assessment. We measured authenticity, urgency, and learning. Results. Learners had a more realistic encounter with the PVP patient (p=0.046), they were more engaged with the PVP condition compared to the manikin in terms of authenticity of encounter and cognitive strategies. The PVP provoked a higher sense of urgency (p=0.002). There was increased learning for the PVP group compared to the manikin group on the pre and post-simulation scores (p=0.027). Conclusion. The realism of the visuals in the PVP increases authenticity and engagement which results in a greater sense of urgency and overall learning.  more » « less
Award ID(s):
1800961
PAR ID:
10547315
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Simulation & Gaming
Volume:
51
Issue:
6
ISSN:
1046-8781
Format(s):
Medium: X Size: p. 802-818
Size(s):
p. 802-818
Sponsoring Org:
National Science Foundation
More Like this
  1. Embodied virtual agents serving as patient simulators are widely used in medical training scenarios, ranging from physical patients to virtual patients presented via virtual and augmented reality technologies. Physical-virtual patients are a hybrid solution that combines the benefits of dynamic visuals integrated into a human-shaped physical form that can also present other cues, such as pulse, breathing sounds, and temperature. Sometimes in simulation the visuals and shape do not match. We carried out a human-participant study employing graduate nursing students in pediatric patient simulations comprising conditions associated with matching/non-matching of the visuals and shape. 
    more » « less
  2. Abstract This study explored how different formats of instructional visuals affect the accuracy of students' metacognitive judgments. Undergraduates (n = 133) studied a series of five biology texts and made judgments of learning. Students were assigned randomly to study the texts only (text only), study the texts with provided visuals (provided visuals group), study the texts and generate their own visuals (learner‐generated visuals group), or study the texts and observe animations of instructor‐generated visuals (instructor‐generated visuals group). After studying the texts and making judgments of learning, all students completed multiple‐choice comprehension tests on each text. The learner‐generated and instructor‐generated visuals groups exhibited significantly higher relative judgment accuracy than the text only and provided visuals groups, though this effect was relatively small. The learner‐generated visuals group also required more study time and was more likely to report the use of visual cues when making their judgments of learning. 
    more » « less
  3. Adult learners have different needs than traditional college-aged students. We present the first year results of a targeted learning community for high-achieving, low-income engineering and engineering technology adult students. Students in this project received academic support and mentorship to prepare them for entering the engineering workforce. By including the adult learners in the development of their learning outcomes, students increased their sense of engineering connectedness, comfort, and security to enable them to confidently enter the engineering and engineering technology workforce. 
    more » « less
  4. While project-based learning purportedly values student agency, supporting and managing this remains challenging. We conducted a design-based research study to understand how problem authenticity, and task and participant structures can contribute to students’ framing agency, in which students make decisions that are consequential to their learning through ill-structured problem framing. We compared three semesters of an undergraduate engineering design project (cohort 1 n=70; cohort 2 n=70; cohort 3 n=66). Discourse analysis of team talk highlights how task and participant structures supported students in the first and third cohorts to display framing agency. In contrast, cohort 2 displayed high agency over task completion, which they had framed as well-structured. We discuss implications for designing ill-structured learning in terms of participant and task structure and problem authenticity. 
    more » « less
  5. We propose and assess the effectiveness of novel immersive simulation-based learning (ISBL) modules for teaching and learning engineering economy concepts. The proposed intervention involves technology-enhanced problem-based learning where the problem context is represented via a three-dimensional (3D), animated discrete-event simulation model that resembles a real-world system or situation that students may encounter in future professional settings. Students can navigate the simulated environment in both low- and high-immersion modes (i.e., on a typical personal computer or via a virtual reality headset). The simulation helps contextualize and visualize the problem setting, allowing students to observe and understand the underlying dynamics, collect relevant data/information, evaluate the effect of changes on the system, and learn by doing. The proposed ISBL approach is supported by multiple pedagogical and psychological theories, namely the information processing approach to learning theory, constructivism theory, self-determination theory, and adult learning theory. We design and implement a set of ISBL modules in an introductory undergraduate engineering economy class. The research experiments involve two groups of students: a control group and an intervention group. Students in the control group complete a set of traditional assignments, while the intervention group uses ISBL modules. We use well-established survey instruments to collect data on demographics, prior preparation, motivation, experiential learning, engineering identity, and self-assessment of learning objectives based on Bloom’s taxonomy. Statistical analysis of the results suggests that ISBL enhances certain dimensions related to motivation and experiential learning, namely relevance, confidence, and utility. We also provide a qualitative assessment of the proposed intervention based on detailed, one-on-one user testing and evaluation interviews. 
    more » « less