skip to main content


Title: Comparing feature sets and machine-learning models for prediction of solar flares: Topology, physics, and model complexity
Context. Machine-learning methods for predicting solar flares typically employ physics-based features that have been carefully cho- sen by experts in order to capture the salient features of the photospheric magnetic fields of the Sun. Aims. Though the sophistication and complexity of these models have grown over time, there has been little evolution in the choice of feature sets, or any systematic study of whether the additional model complexity leads to higher predictive skill. Methods. This study compares the relative prediction performance of four different machine-learning based flare prediction models with increasing degrees of complexity. It evaluates three different feature sets as input to each model: a “traditional” physics-based feature set, a novel “shape-based” feature set derived from topological data analysis (TDA) of the solar magnetic field, and a com- bination of these two sets. A systematic hyperparameter tuning framework is employed in order to assure fair comparisons of the models across different feature sets. Finally, principal component analysis is used to study the effects of dimensionality reduction on these feature sets. Results. It is shown that simpler models with fewer free parameters perform better than the more complicated models on the canonical 24-h flare forecasting problem. In other words, more complex machine-learning architectures do not necessarily guarantee better prediction performance. In addition, it is found that shape-based feature sets contain just as much useful information as physics-based feature sets for the purpose of flare prediction, and that the dimension of these feature sets – particularly the shape-based one – can be greatly reduced without impacting predictive accuracy.  more » « less
Award ID(s):
2001670
NSF-PAR ID:
10489199
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
EDP Sciences
Date Published:
Journal Name:
Astronomy and astrophysics
Volume:
674
ISSN:
1067-8603
Page Range / eLocation ID:
A159
Subject(s) / Keyword(s):
["Sun:flares","magneticfields","sunspots","solar-terrestrial relations\u2013methods:data analysis"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Current operational forecasts of solar eruptions are made by human experts using a combination of qualitative shape-based classification systems and historical data about flaring frequencies. In the past decade, there has been a great deal of interest in crafting machine-learning (ML) flare-prediction methods to extract underlying patterns from a training set – e.g. a set of solar magnetogram images, each characterized by features derived from the magnetic field and labeled as to whether it was an eruption precursor. These patterns, captured by various methods (neural nets, support vector machines, etc.), can then be used to classify new images. A major challenge with any ML method is the featurization of the data: pre-processing the raw images to extract higher-level properties, such as characteristics of the magnetic field, that can streamline the training and use of these methods. It is key to choose features that are informative, from the standpoint of the task at hand. To date, the majority of ML-based solar eruption methods have used physics-based magnetic and electric field features such as the total unsigned magnetic flux, the gradients of the fields, the vertical current density, etc. In this paper, we extend the relevant feature set to include characteristics of the magnetic field that are based purely on the geometry and topology of 2D magnetogram images and show that this improves the prediction accuracy of a neural-net based flare-prediction method. 
    more » « less
  2. Abstract

    Photospheric magnetic field parameters are frequently used to analyze and predict solar events. Observation of these parameters over time, i.e., representing solar events by multivariate time-series (MVTS) data, can determine relationships between magnetic field states in active regions and extreme solar events, e.g., solar flares. We can improve our understanding of these events by selecting the most relevant parameters that give the highest predictive performance. In this study, we propose a two-step incremental feature selection method for MVTS data using a deep-learning model based on long short-term memory (LSTM) networks. First, each MVTS feature (magnetic field parameter) is evaluated individually by a univariate sequence classifier utilizing an LSTM network. Then, the top performing features are combined to produce input for an LSTM-based multivariate sequence classifier. Finally, we tested the discrimination ability of the selected features by training downstream classifiers, e.g., Minimally Random Convolutional Kernel Transform and support vector machine. We performed our experiments using a benchmark data set for flare prediction known as Space Weather Analytics for Solar Flares. We compared our proposed method with three other baseline feature selection methods and demonstrated that our method selects more discriminatory features compared to other methods. Due to the imbalanced nature of the data, primarily caused by the rarity of minority flare classes (e.g., the X and M classes), we used the true skill statistic as the evaluation metric. Finally, we reported the set of photospheric magnetic field parameters that give the highest discrimination performance in predicting flare classes.

     
    more » « less
  3. Abstract

    To improve predictive machine learning-based models limited by sparse data, supplemental physics-related features are introduced into a deep neural network (DNN). While some approaches inject physics through differential equations or numerical simulation, improvements are possible using simplified relationships from engineering references. To evaluate this hypothesis, thin rectangular plates were simulated to generate training datasets. With plate dimensions and material properties as input features and fundamental natural frequency as the output, predictive performance of a data-driven DNN-based model is compared with models using supplemental inputs, such as modulus of rigidity. To evaluate model accuracy improvements, these additional features are injected into various DNN layers, and the network is trained with four different dataset sizes. When evaluated against independent data of similar features to the training sets, supplementation provides no statistically-significant prediction error reduction. However, notable accuracy gains occur when independent test data is of material and dimensions different from the original training set. Furthermore, when physics-enhanced data is injected into multiple DNN layers, reductions in mean error from 33.2% to 19.6%, 34.9% to 19.9%, 35.8% to 22.4%, and 43.0% to 28.4% are achieved for dataset sizes of 261, 117, 60, and 30, respectively, demonstrating potential for generalizability using a data supplementation approach. Additionally, when compared with other methods—such as linear regression and support vector machine (SVM) approaches—the physics-enhanced DNN demonstrates an order of magnitude reduction in percentage error for dataset sizes of 261, 117, and 60 and a 30% reduction for a size of 30 when compared with a cubic SVM model independently tested with data divergent from the training and validation set.

     
    more » « less
  4. Solar flare prediction is a central problem in space weather forecasting and has captivated the attention of a wide spectrum of researchers due to recent advances in both remote sensing as well as machine learning and deep learning approaches. The experimental findings based on both machine and deep learning models reveal significant performance improvements for task specific datasets. Along with building models, the practice of deploying such models to production environments under operational settings is a more complex and often time-consuming process which is often not addressed directly in research settings. We present a set of new heuristic approaches to train and deploy an operational solar flare prediction system for ≥M1.0-class flares with two prediction modes: full-disk and active region-based. In full-disk mode, predictions are performed on full-disk line-of-sight magnetograms using deep learning models whereas in active region-based models, predictions are issued for each active region individually using multivariate time series data instances. The outputs from individual active region forecasts and full-disk predictors are combined to a final full-disk prediction result with a meta-model. We utilized an equal weighted average ensemble of two base learners’ flare probabilities as our baseline meta learner and improved the capabilities of our two base learners by training a logistic regression model. The major findings of this study are: 1) We successfully coupled two heterogeneous flare prediction models trained with different datasets and model architecture to predict a full-disk flare probability for next 24 h, 2) Our proposed ensembling model, i.e., logistic regression, improves on the predictive performance of two base learners and the baseline meta learner measured in terms of two widely used metrics True Skill Statistic (TSS) and Heidke Skill Score (HSS), and 3) Our result analysis suggests that the logistic regression-based ensemble (Meta-FP) improves on the full-disk model (base learner) by ∼9% in terms TSS and ∼10% in terms of HSS. Similarly, it improves on the AR-based model (base learner) by ∼17% and ∼20% in terms of TSS and HSS respectively. Finally, when compared to the baseline meta model, it improves on TSS by ∼10% and HSS by ∼15%. 
    more » « less
  5. Machine learning (ML) methods, such as artificial neural networks (ANN), k-nearest neighbors (kNN), random forests (RF), support vector machines (SVM), and boosted decision trees (DTs), may offer stronger predictive performance than more traditional, parametric methods, such as linear regression, multiple linear regression, and logistic regression (LR), for specific mapping and modeling tasks. However, this increased performance is often accompanied by increased model complexity and decreased interpretability, resulting in critiques of their “black box” nature, which highlights the need for algorithms that can offer both strong predictive performance and interpretability. This is especially true when the global model and predictions for specific data points need to be explainable in order for the model to be of use. Explainable boosting machines (EBM), an augmentation and refinement of generalize additive models (GAMs), has been proposed as an empirical modeling method that offers both interpretable results and strong predictive performance. The trained model can be graphically summarized as a set of functions relating each predictor variable to the dependent variable along with heat maps representing interactions between selected pairs of predictor variables. In this study, we assess EBMs for predicting the likelihood or probability of slope failure occurrence based on digital terrain characteristics in four separate Major Land Resource Areas (MLRAs) in the state of West Virginia, USA and compare the results to those obtained with LR, kNN, RF, and SVM. EBM provided predictive accuracies comparable to RF and SVM and better than LR and kNN. The generated functions and visualizations for each predictor variable and included interactions between pairs of predictor variables, estimation of variable importance based on average mean absolute scores, and provided scores for each predictor variable for new predictions add interpretability, but additional work is needed to quantify how these outputs may be impacted by variable correlation, inclusion of interaction terms, and large feature spaces. Further exploration of EBM is merited for geohazard mapping and modeling in particular and spatial predictive mapping and modeling in general, especially when the value or use of the resulting predictions would be greatly enhanced by improved interpretability globally and availability of prediction explanations at each cell or aggregating unit within the mapped or modeled extent. 
    more » « less