- Award ID(s):
- 2001670
- NSF-PAR ID:
- 10489199
- Publisher / Repository:
- EDP Sciences
- Date Published:
- Journal Name:
- Astronomy and astrophysics
- Volume:
- 674
- ISSN:
- 1067-8603
- Page Range / eLocation ID:
- A159
- Subject(s) / Keyword(s):
- Sun:flares magneticfields sunspots solar-terrestrial relations–methods:data analysis
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Current operational forecasts of solar eruptions are made by human experts using a combination of qualitative shape-based classification systems and historical data about flaring frequencies. In the past decade, there has been a great deal of interest in crafting machine-learning (ML) flare-prediction methods to extract underlying patterns from a training set – e.g. a set of solar magnetogram images, each characterized by features derived from the magnetic field and labeled as to whether it was an eruption precursor. These patterns, captured by various methods (neural nets, support vector machines, etc.), can then be used to classify new images. A major challenge with any ML method is the featurization of the data: pre-processing the raw images to extract higher-level properties, such as characteristics of the magnetic field, that can streamline the training and use of these methods. It is key to choose features that are informative, from the standpoint of the task at hand. To date, the majority of ML-based solar eruption methods have used physics-based magnetic and electric field features such as the total unsigned magnetic flux, the gradients of the fields, the vertical current density, etc. In this paper, we extend the relevant feature set to include characteristics of the magnetic field that are based purely on the geometry and topology of 2D magnetogram images and show that this improves the prediction accuracy of a neural-net based flare-prediction method.more » « less
-
Abstract Photospheric magnetic field parameters are frequently used to analyze and predict solar events. Observation of these parameters over time, i.e., representing solar events by multivariate time-series (MVTS) data, can determine relationships between magnetic field states in active regions and extreme solar events, e.g., solar flares. We can improve our understanding of these events by selecting the most relevant parameters that give the highest predictive performance. In this study, we propose a two-step incremental feature selection method for MVTS data using a deep-learning model based on long short-term memory (LSTM) networks. First, each MVTS feature (magnetic field parameter) is evaluated individually by a univariate sequence classifier utilizing an LSTM network. Then, the top performing features are combined to produce input for an LSTM-based multivariate sequence classifier. Finally, we tested the discrimination ability of the selected features by training downstream classifiers, e.g., Minimally Random Convolutional Kernel Transform and support vector machine. We performed our experiments using a benchmark data set for flare prediction known as Space Weather Analytics for Solar Flares. We compared our proposed method with three other baseline feature selection methods and demonstrated that our method selects more discriminatory features compared to other methods. Due to the imbalanced nature of the data, primarily caused by the rarity of minority flare classes (e.g., the X and M classes), we used the true skill statistic as the evaluation metric. Finally, we reported the set of photospheric magnetic field parameters that give the highest discrimination performance in predicting flare classes.
-
Abstract Solar flare prediction plays an important role in understanding and forecasting space weather. The main goal of the Helioseismic and Magnetic Imager (HMI), one of the instruments on NASA’s Solar Dynamics Observatory, is to study the origin of solar variability and characterize the Sun’s magnetic activity. HMI provides continuous full-disk observations of the solar vector magnetic field with high cadence data that lead to reliable predictive capability; yet, solar flare prediction effort utilizing these data is still limited. In this paper, we present a machine-learning-as-a-service (MLaaS) framework, called DeepSun, for predicting solar flares on the web based on HMI’s data products. Specifically, we construct training data by utilizing the physical parameters provided by the Space-weather HMI Active Region Patch (SHARP) and categorize solar flares into four classes, namely B, C, M and X, according to the X-ray flare catalogs available at the National Centers for Environmental Information (NCEI). Thus, the solar flare prediction problem at hand is essentially a multi-class (i.e., four-class) classification problem. The DeepSun system employs several machine learning algorithms to tackle this multi-class prediction problem and provides an application programming interface (API) for remote programming users. To our knowledge, DeepSun is the first MLaaS tool capable of predicting solar flares through the internet.more » « less
-
Abstract A hybrid two-stage machine-learning architecture that addresses the problem of excessive false positives (false alarms) in solar flare prediction systems is investigated. The first stage is a convolutional neural network (CNN) model based on the VGG-16 architecture that extracts features from a temporal stack of consecutive Solar Dynamics Observatory Helioseismic and Magnetic Imager magnetogram images to produce a flaring probability. The probability of flaring is added to a feature vector derived from the magnetograms to train an extremely randomized trees (ERT) model in the second stage to produce a binary deterministic prediction (flare/no-flare) in a 12 hr forecast window. To tune the hyperparameters of the architecture, a new evaluation metric is introduced: the “scaled True Skill Statistic.” It specifically addresses the large discrepancy between the true positive rate and the false positive rate in the highly unbalanced solar flare event training data sets. Through hyperparameter tuning to maximize this new metric, our two-stage architecture drastically reduces false positives by ≈48% without significantly affecting the true positives (reduction by ≈12%), when compared with predictions from the first-stage CNN alone. This, in turn, improves various traditional binary classification metrics sensitive to false positives, such as the precision, F1, and the Heidke Skill Score. The end result is a more robust 12 hr flare prediction system that could be combined with current operational flare-forecasting methods. Additionally, using the ERT-based feature-ranking mechanism, we show that the CNN output probability is highly ranked in terms of flare prediction relevance.
-
Solar flare prediction is a central problem in space weather forecasting and has captivated the attention of a wide spectrum of researchers due to recent advances in both remote sensing as well as machine learning and deep learning approaches. The experimental findings based on both machine and deep learning models reveal significant performance improvements for task specific datasets. Along with building models, the practice of deploying such models to production environments under operational settings is a more complex and often time-consuming process which is often not addressed directly in research settings. We present a set of new heuristic approaches to train and deploy an operational solar flare prediction system for ≥M1.0-class flares with two prediction modes: full-disk and active region-based. In full-disk mode, predictions are performed on full-disk line-of-sight magnetograms using deep learning models whereas in active region-based models, predictions are issued for each active region individually using multivariate time series data instances. The outputs from individual active region forecasts and full-disk predictors are combined to a final full-disk prediction result with a meta-model. We utilized an equal weighted average ensemble of two base learners’ flare probabilities as our baseline meta learner and improved the capabilities of our two base learners by training a logistic regression model. The major findings of this study are: 1) We successfully coupled two heterogeneous flare prediction models trained with different datasets and model architecture to predict a full-disk flare probability for next 24 h, 2) Our proposed ensembling model, i.e., logistic regression, improves on the predictive performance of two base learners and the baseline meta learner measured in terms of two widely used metrics True Skill Statistic (TSS) and Heidke Skill Score (HSS), and 3) Our result analysis suggests that the logistic regression-based ensemble (Meta-FP) improves on the full-disk model (base learner) by ∼9% in terms TSS and ∼10% in terms of HSS. Similarly, it improves on the AR-based model (base learner) by ∼17% and ∼20% in terms of TSS and HSS respectively. Finally, when compared to the baseline meta model, it improves on TSS by ∼10% and HSS by ∼15%.more » « less