skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Explainable Boosting Machines for Slope Failure Spatial Predictive Modeling
Machine learning (ML) methods, such as artificial neural networks (ANN), k-nearest neighbors (kNN), random forests (RF), support vector machines (SVM), and boosted decision trees (DTs), may offer stronger predictive performance than more traditional, parametric methods, such as linear regression, multiple linear regression, and logistic regression (LR), for specific mapping and modeling tasks. However, this increased performance is often accompanied by increased model complexity and decreased interpretability, resulting in critiques of their “black box” nature, which highlights the need for algorithms that can offer both strong predictive performance and interpretability. This is especially true when the global model and predictions for specific data points need to be explainable in order for the model to be of use. Explainable boosting machines (EBM), an augmentation and refinement of generalize additive models (GAMs), has been proposed as an empirical modeling method that offers both interpretable results and strong predictive performance. The trained model can be graphically summarized as a set of functions relating each predictor variable to the dependent variable along with heat maps representing interactions between selected pairs of predictor variables. In this study, we assess EBMs for predicting the likelihood or probability of slope failure occurrence based on digital terrain characteristics in four separate Major Land Resource Areas (MLRAs) in the state of West Virginia, USA and compare the results to those obtained with LR, kNN, RF, and SVM. EBM provided predictive accuracies comparable to RF and SVM and better than LR and kNN. The generated functions and visualizations for each predictor variable and included interactions between pairs of predictor variables, estimation of variable importance based on average mean absolute scores, and provided scores for each predictor variable for new predictions add interpretability, but additional work is needed to quantify how these outputs may be impacted by variable correlation, inclusion of interaction terms, and large feature spaces. Further exploration of EBM is merited for geohazard mapping and modeling in particular and spatial predictive mapping and modeling in general, especially when the value or use of the resulting predictions would be greatly enhanced by improved interpretability globally and availability of prediction explanations at each cell or aggregating unit within the mapped or modeled extent.  more » « less
Award ID(s):
2046059
PAR ID:
10329622
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Remote sensing
Volume:
13
Issue:
24
ISSN:
2072-4292
Page Range / eLocation ID:
4991
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Finley, Stacey D (Ed.)
    Despite significant progress in vaccine research, the level of protection provided by vaccination can vary significantly across individuals. As a result, understanding immunologic variation across individuals in response to vaccination is important for developing next-generation efficacious vaccines. Accurate outcome prediction and identification of predictive biomarkers would represent a significant step towards this goal. Moreover, in early phase vaccine clinical trials, small datasets are prevalent, raising the need and challenge of building a robust and explainable prediction model that can reveal heterogeneity in small datasets. We propose a new model named Generative Mixture of Logistic Regression (GeM-LR), which combines characteristics of both a generative and a discriminative model. In addition, we propose a set of model selection strategies to enhance the robustness and interpretability of the model. GeM-LR extends a linear classifier to a non-linear classifier without losing interpretability and empowers the notion of predictive clustering for characterizing data heterogeneity in connection with the outcome variable. We demonstrate the strengths and utility of GeM-LR by applying it to data from several studies. GeM-LR achieves better prediction results than other popular methods while providing interpretations at different levels. 
    more » « less
  2. Abstract Background Predictive models utilizing social determinants of health (SDH), demographic data, and local weather data were trained to predict missed imaging appointments (MIA) among breast imaging patients at the Boston Medical Center (BMC). Patients were characterized by many different variables, including social needs, demographics, imaging utilization, appointment features, and weather conditions on the date of the appointment. Methods This HIPAA compliant retrospective cohort study was IRB approved. Informed consent was waived. After data preprocessing steps, the dataset contained 9,970 patients and 36,606 appointments from 1/1/2015 to 12/31/2019. We identified 57 potentially impactful variables used in the initial prediction model and assessed each patient for MIA. We then developed a parsimonious model via recursive feature elimination, which identified the 25 most predictive variables. We utilized linear and non-linear models including support vector machines (SVM), logistic regression (LR), and random forest (RF) to predict MIA and compared their performance. Results The highest-performing full model is the nonlinear RF, achieving the highest Area Under the ROC Curve (AUC) of 76% and average F1 score of 85%. Models limited to the most predictive variables were able to attain AUC and F1 scores comparable to models with all variables included. The variables most predictive of missed appointments included timing, prior appointment history, referral department of origin, and socioeconomic factors such as household income and access to caregiving services. Conclusions Prediction of MIA with the data available is inherently limited by the complex, multifactorial nature of MIA. However, the algorithms presented achieved acceptable performance and demonstrated that socioeconomic factors were useful predictors of MIA. In contrast with non-modifiable demographic factors, we can address SDH to decrease the incidence of MIA. 
    more » « less
  3. Abstract Purpose. To investigate the relationship between spatial parotid dose and the risk of xerostomia in patients undergoing head-and-neck cancer radiotherapy, using machine learning (ML) methods.Methods. Prior to conducting voxel-based ML analysis of the spatial dose, two steps were taken: (1) The parotid dose was standardized through deformable image registration to a reference patient; (2) Bilateral parotid doses were regrouped into contralateral and ipsilateral portions depending on their proximity to the gross tumor target. Individual dose voxels were input into six commonly used ML models, which were tuned with ten-fold cross validation: random forest (RF), ridge regression (RR), support vector machine (SVM), extra trees (ET), k-nearest neighbor (kNN), and naïve Bayes (NB). Binary endpoints from 240 patients were used for model training and validation: 0 (N = 119) for xerostomia grades 0 or 1, and 1 (N = 121) for grades 2 or higher. Model performance was evaluated using multiple metrics, including accuracy, F1score, areas under the receiver operating characteristics curves (auROC), and area under the precision–recall curves (auPRC). Dose voxel importance was assessed to identify local dose patterns associated with xerostomia risk.Results. Four models, including RF, SVM, ET, and NB, yielded average auROCs and auPRCs greater than 0.60 from ten-fold cross-validation on the training data, except for a lower auROC from NB. The first three models, along with kNN, demonstrated higher accuracy and F1scores. A bootstrapping analysis confirmed test uncertainty. Voxel importance analysis from kNN indicated that the posterior portion of the ipsilateral gland was more predictive of xerostomia, but no clear patterns were identified from the other models.Conclusion. Voxel doses as predictors of xerostomia were confirmed with some ML classifiers, but no clear regional patterns could be established among these classifiers, except kNN. Further research with a larger patient dataset is needed to identify conclusive patterns. 
    more » « less
  4. Abstract Water sustainability in the built environment requires an accurate estimation of residential water end uses (e.g., showers, toilets, faucets, etc.). In this study, we evaluate the performance of four models (Random Forest, RF; Support Vector Machines, SVM; Logistic Regression, Log‐reg; and Neural Networks, NN) for residential water end‐use classification using actual (measured) and synthetic labeled data sets. We generated synthetic labeled data using Conditional Tabular Generative Adversarial Networks. We then utilized grid search to train each model on their respective optimized hyperparameters. The RF model exhibited the best model performance overall, while the Log‐reg model had the shortest execution times under different balanced and imbalanced (based on number of events per class) synthetic data scenarios, demonstrating a computationally efficient alternative for RF for specific end uses. The NN model exhibited high performance with the tradeoff of longer execution times compared to the other classification models. In the balanced data set scenario, all models achieved closely aligned F1‐scores, ranging from 0.83 to 0.90. However, when faced with imbalanced data reflective of actual conditions, both the SVM and Log‐reg models showed inferior performance compared to the RF and NN models. Overall, we concluded that decision tree‐based models emerge as the optimal choice for classification tasks in the context of water end‐use data. Our study advances residential smart water metering systems through creating synthetic labeled end‐use data and providing insight into the strengths and weaknesses of various supervised machine learning classifiers for end‐use identification. 
    more » « less
  5. Prediction of student performance in Introductory programming courses can assist struggling students and improve their persistence. On the other hand, it is important for the prediction to be transparent for the instructor and students to effectively utilize the results of this prediction. Explainable Machine Learning models can effectively help students and instructors gain insights into students’ different programming behaviors and problem-solving strategies that can lead to good or poor performance. This study develops an explainable model that predicts students’ performance based on programming assignment submission information. We extract different data-driven features from students’ programming submissions and employ a stacked ensemble model to predict students’ final exam grades. We use SHAP, a game-theory-based framework, to explain the model’s predictions to help the stakeholders understand the impact of different programming behaviors on students’ success. Moreover, we analyze the impact of important features and utilize a combination of descriptive statistics and mixture models to identify different profiles of students based on their problem-solving patterns to bolster explainability. The experimental results suggest that our model significantly outperforms other Machine Learning models, including KNN, SVM, XGBoost, Bagging, Boosting, and Linear regression. Our explainable and transparent model can help explain students’ common problem-solving patterns in relationship with their level of expertise resulting in effective intervention and adaptive support to students. 
    more » « less