skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How development and survival combine to determine the thermal sensitivity of insects
Thermal performance curves (TPCs) depict variation in vital rates in response to temperature and have been an important tool to understand ecological and evolutionary constraints on the thermal sensitivity of ectotherms. TPCs allow for the calculation of indicators of thermal tolerance, such as minimum, optimum, and maximum temperatures that allow for a given metabolic function. However, these indicators are computed using only responses from surviving individuals, which can lead to underestimation of deleterious effects of thermal stress, particularly at high temperatures. Here, we advocate for an integrative framework for assessing thermal sensitivity, which combines both vital rates and survival probabilities, and focuses on the temperature interval that allows for population persistence. Using a collated data set of Lepidopteran development rate and survival measured on the same individuals, we show that development rate is generally limiting at low temperatures, while survival is limiting at high temperatures. We also uncover differences between life stages and across latitudes, with extended survival at lower temperatures in temperate regions. Our combined performance metric demonstrates similar thermal breadth in temperate and tropical individuals, an effect that only emerges from integration of both development and survival trends. We discuss the benefits of using this framework in future predictive and management contexts.  more » « less
Award ID(s):
1839021 1702664 2128241
PAR ID:
10489440
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Silva, Daniel de
Publisher / Repository:
Public Library of Science (PLoSOne)
Date Published:
Journal Name:
PLOS ONE
Volume:
19
Issue:
1
ISSN:
1932-6203
Page Range / eLocation ID:
e0291393
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Thermal performance curves (TPCs) are important tools for predicting the sensitivity of populations to climate change. However, the interactive ways that temperature affects multiple life‐history components lead to different fitness outcomes. These interactions are poorly understood for modular animals, especially over the lifespan of individual colonies, which limits our capacity to connect physiological and demographic responses.The goal of this study was to assess and compare the relationships between temperature and different life‐history components in a modular animal to reveal the mechanisms underlying TPCs for fitness.We reared replicated clones of the marine bryozoanBugula neritinaacross a thermal gradient (16 values) ranging from 23 to 32°C, which reflected the upper thermal range of seasonal variation in the field. TPCs were constructed for survival (measured as zooids states within a colony), growth rate, development to reproductive maturity and reproductive capacity, which were measured over much of the realized lifespan expected under field conditions (~30 days).The effect of temperature was more acute on zooid states rather than whole‐colony survival, and increased temperature increased the frequency of polypide regression. Most colonies reached reproductive maturity up to ~30°C, but growth rate and reproduction decreased at temperatures beyond ~25°C. The decline in reproductive capacity over temperatures above ~25°C was then due to the decline in the production of zooids capable of brooding embryos and zooids transitioning to regressed states up until about 30°C and transitioning to dead state beyond that.Higher temperatures are often considered to affect reproduction by interfering with gametogenesis and post‐zygotic pathways, but in modular animals, changes in growth rate and module states could indirectly cause temperature sensitivity of reproduction. Our study has implications for the role of temperature in driving the sampled population's dynamics by setting the number of generations that occur during the time window when temperatures are conducive to reproduction. Our results also have implications for the generality and predictability of temperature on population persistence across unitary and modular animals. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  2. ABSTRACT Thermal performance curves are commonly used to investigate the effects of heat acclimation on thermal tolerance and physiological performance. However, recent work indicates that the metrics of these curves heavily depend on experimental design and may be poor predictors of animal survival during heat events in the field. In intertidal mussels, cardiac thermal performance (CTP) tests have been widely used as indicators of animals' acclimation or acclimatization state, providing two indices of thermal responses: critical temperature (Tcrit; the temperature above which heart rate abruptly declines) and flatline temperature (Tflat; the temperature where heart rate ceases). Despite the wide use of CTP tests, it remains largely unknown how Tcrit and Tflat change within a single individual after heat acclimation, and whether changes in these indices can predict altered survival in the field. Here, we addressed these issues by evaluating changes in CTP indices in the same individuals before and after heat acclimation. For control mussels, merely reaching Tcrit was not lethal, whereas remaining at Tcrit for ≥10 min was lethal. Heat acclimation significantly increased Tcrit only in mussels with an initially low Tcrit (<35°C), but improved their survival time above Tcrit by 20 min on average. Tflat increased by ∼1.6°C with heat acclimation, but it is unlikely that increased Tflat improves survival in the field. In summary, Tcrit and Tflat per se may fall short of providing quantitative indices of thermal tolerance in mussels; instead, a combination of Tcrit and tolerance time at temperatures ≥Tcrit better defines changes in thermal tolerance with heat acclimation. 
    more » « less
  3. The interaction between larval host plant quality and temperature can influence the short-term physiological rates and life-history traits of insect herbivores. These factors can vary locally, resulting in local adaptation in responses to diet and temperature, but the comparison of these interactions between populations is infrequently carried out. In this study, we examine how the macronutrient ratio of an artificial diet determines the larval growth, development, and survival of larvalPieris rapae(Lepidoptera: Pieridae) at different temperatures between two invasive North American populations from different climatic regions. We conducted a fully factorial experiment with three temperature treatments (18°C, 25°C, and 32°C) and three artificial diet treatments varying in terms of the ratio of protein to carbohydrate (low protein, balanced, and high protein). The effects of diet on life-history traits were greater at lower temperatures, but these differed between populations. Larvae from the subtropical population had reduced survival to pupation on the low-protein diet in the cold temperature treatment, whereas larval survival for the temperate population was equally high for all temperature and diet treatments. Overall, both populations performed more poorly (i.e., they showed slower rates of consumption, growth, and development, and had a smaller pupal mass) in the diet with the low protein ratio, but larvae from the temperate population were less sensitive to diet ratio changes at all temperatures. Our results confirm that the physiological and life-history consequences of imbalanced nutrition for insect herbivores may depend on developmental temperatures, and that different geographic populations ofP. rapaewithin North America vary in their sensitivity to nutritional balance and temperature. 
    more » « less
  4. Understanding how tropical corals respond to temperatures is important to evaluating their capacity to persist in a warmer future. We studied the common Pacific coral Pocillopora over 44° of latitude, and used populations at three islands with different thermal regimes to compare their responses to temperature using thermal performance curves (TPCs) for respiration and gross photosynthesis. Corals were sampled in the local autumn from Moorea, Guam, and Okinawa where mean (± s.d.) annual seawater temperature is 28.0±0.9°C, 28.9±0.7°C, and 25.1±3.4°C, respectively. TPCs for respiration were similar among latitudes, the thermal optimum (Topt) was above the local maximum temperature at all three islands, and maximum respiration was lowest at Okinawa. TPCs for gross photosynthesis were wider, implying greater thermal eurytopy, with a higher Topt in Moorea versus Guam and Okinawa. Topt was above the maximum temperature in Moorea, but was similar to daily temperatures over 13% of the year in Okinawa, and 53% of the year in Guam. There was greater annual variation in daily temperatures in Okinawa than Guam or Moorea, which translated to large variation in the supply of metabolic energy and photosynthetically fixed carbon at higher latitudes. Despite these trends, the differences in TPCs for Pocillopora were not profoundly different across latitudes, reducing the likelihood that populations of these corals could better match their phenotypes to future more extreme temperatures through migration. Any such response would place a premium on high metabolic plasticity and tolerance of large seasonal variations in energy budgets. 
    more » « less
  5. Synopsis The fitness implications of climate variability and change are often estimated by integrating an organism’s thermal sensitivity of performance across a time series of experienced body temperatures. Although this approach is an important first step in evaluating an organism’s sensitivity to climate or climate change, it ignores potential influences of recent exposure to thermal stress on current thermal sensitivity. Here, we account for recent thermal stress by estimating rates of damage, repair, and other carryover effects; and we illustrate the approach with fecundity and development rate data from experiments that exposed aphids to various stressful and fluctuating temperatures. Our analyses indicate that heat stress for these aphids starts near the upper thermal limit for performance; that heat stress intensifies with both the exposure duration and with temperature; and that there is considerable capacity for repair at temperatures near the thermal optimum for performance. Results from experiments with aphids indicate that incorporating time series of damage, recovery, and repair will be necessary to anticipate fitness outcomes of climate change and variability. 
    more » « less