skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Population divergence in nutrient-temperature interactions in Pieris rapae
The interaction between larval host plant quality and temperature can influence the short-term physiological rates and life-history traits of insect herbivores. These factors can vary locally, resulting in local adaptation in responses to diet and temperature, but the comparison of these interactions between populations is infrequently carried out. In this study, we examine how the macronutrient ratio of an artificial diet determines the larval growth, development, and survival of larvalPieris rapae(Lepidoptera: Pieridae) at different temperatures between two invasive North American populations from different climatic regions. We conducted a fully factorial experiment with three temperature treatments (18°C, 25°C, and 32°C) and three artificial diet treatments varying in terms of the ratio of protein to carbohydrate (low protein, balanced, and high protein). The effects of diet on life-history traits were greater at lower temperatures, but these differed between populations. Larvae from the subtropical population had reduced survival to pupation on the low-protein diet in the cold temperature treatment, whereas larval survival for the temperate population was equally high for all temperature and diet treatments. Overall, both populations performed more poorly (i.e., they showed slower rates of consumption, growth, and development, and had a smaller pupal mass) in the diet with the low protein ratio, but larvae from the temperate population were less sensitive to diet ratio changes at all temperatures. Our results confirm that the physiological and life-history consequences of imbalanced nutrition for insect herbivores may depend on developmental temperatures, and that different geographic populations ofP. rapaewithin North America vary in their sensitivity to nutritional balance and temperature.  more » « less
Award ID(s):
1950055
PAR ID:
10512128
Author(s) / Creator(s):
;
Publisher / Repository:
Frontiers in Insect Science
Date Published:
Journal Name:
Frontiers in Insect Science
Volume:
3
ISSN:
2673-8600
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Insect colouration mediated by melanization can assist in dealing with environmental temperatures. However, melanin synthesis can be costly and depends on the ability of insects to acquire enough energy and nutrients from their diets. Due to the increased plant C:N ratio associated with elevated CO2concentrations, insect herbivores' melanization could be limited by the amount of nitrogen they acquire from their host plants.To investigate how diet C:N impacts the potential colour response to temperature, we usedManduca sextacaterpillars reared at different combinations of temperatures and diet C:N ratios, and measured pupal mass and development time (performance metrics) and colour morphology.The high‐temperature treatment (27°C) had a positive impact on larval performance, whereas a nitrogen‐poor diet was related to lower performance. Using a fitness metric that considers both pupal mass and development time, we found a positive effect of both high temperature and nitrogen‐rich diet treatments on larval fitness.We found that diet and temperature affected the colouration of larvae, in which larvae reared at the low‐temperature treatment (18°C) and fed a nitrogen‐rich diet were darker than their counterparts.Our results provide experimental evidence of the impact of diet on melanization and suggest that CO2‐related changes in plant quality could be associated with changes in insect herbivore performance and colouration. 
    more » « less
  2. Abstract Dietary generalist herbivorous insects are widespread and often occur in a variety of environments. Across their geographic range, herbivorous insects may encounter variable plant traits as they feed on high‐quality or low‐quality plants. Herbivorous insect larvae experience both bottom‐up (host plant) and top‐down (parasitoid) factors that affect survival. Host plant quality may affect larval growth and survival in that larvae feeding on low‐quality plants often suffer reduced fitness. However, herbivores on different host plants are also subject to different levels of parasitism. High‐quality plants confer stronger larval performance (higher survival, more offspring), but larvae may also face higher parasitism. In some herbivore species, diet mediates larval immune response. The generalist insect herbivore fall webworm (FW),Hyphantria cuneaDrury (Lepidoptera: Erebidae), is a moth native to North America, and its larvae have considerable variance in their performance when reared on different host plants. We investigated whether diet affects the immune response in FW larvae when they are reared on different host plant species known to vary in food quality. We measured immune response by melanization of a nylon filament. We found significant differences in immune response across host plants, indicating that diet mediates immune response in FW larvae. Our study helps elucidate the factors that cause variation in immune response in a generalist herbivore. 
    more » « less
  3. Abstract Feeding for most animals involves bouts of active ingestion alternating with bouts of no ingestion. In insects, the temporal patterning of bouts varies widely with resource quality and is known to affect growth, development time, and fitness. However, the precise impacts of resource quality and feeding behavior on insect life history traits are poorly understood. To explore and better understand the connections between feeding behavior, resource quality, and insect life history traits, we combined laboratory experiments with a recently proposed mechanistic model of insect growth and development for a larval herbivore,Manduca sexta. We ran feeding trials for 4th and 5th instar larvae across different diet types (two hostplants and artificial diet) and used these data to parameterize a joint model of age and mass at maturity that incorporates both insect feeding behavior and hormonal activity. We found that the estimated durations of both feeding and nonfeeding bouts were significantly shorter on low‐quality than on high‐quality diets. We then explored how well the fitted model predicted historical out‐of‐sample data on age and mass ofM. sexta. We found that the model accurately described qualitative outcomes for the out‐of‐sample data, notably that a low‐quality diet results in reduced mass and later age at maturity compared with high‐quality diets. Our results clearly demonstrate the importance of diet quality on multiple components of insect feeding behavior (feeding and nonfeeding) and partially validate a joint model of insect life history. We discuss the implications of these findings with respect to insect herbivory and discuss ways in which our model could be improved or extended to other systems. 
    more » « less
  4. In holometabolous insects, larval nutrition affects adult body size, a life history trait with a profound influence on performance and fitness. Individual nutritional components of larval diets are often complex and may interact with one another, necessitating the use of a geometric framework for elucidating nutritional effects. In the honey bee, Apis mellifera, nurse bees provision food to developing larvae, directly moderating growth rates and caste development. However, the eusocial nature of honey bees makes nutritional studies challenging, because diet components cannot be systematically manipulated in the hive. Using in vitro rearing, we investigated the roles and interactions between carbohydrate and protein content on larval survival, growth, and development in A. mellifera. We applied a geometric framework to determine how these two nutritional components interact across nine artificial diets. Honey bees successfully completed larval development under a wide range of protein and carbohydrate contents, with the medium protein (∼5%) diet having the highest survival. Protein and carbohydrate both had significant and non-linear effects on growth rate, with the highest growth rates observed on a medium-protein, low-carbohydrate diet. Diet composition did not have a statistically significant effect on development time. These results confirm previous findings that protein and carbohydrate content affect the growth of A. mellifera larvae. However, this study identified an interaction between carbohydrate and protein content that indicates a low-protein, high-carb diet has a negative effect on larval growth and survival. These results imply that worker recruitment in the hive would decline under low protein conditions, even when nectar abundance or honey stores are sufficient. 
    more » « less
  5. Abstract Because foundation species create structure in a community, understanding their ecological and evolutionary responses to global change is critical for predicting the ecological and economic management of species and communities that rely on them. Giant kelp (Macrocystis pyrifera) is a globally distributed foundation species with seasonal fluctuations in abundance in response to local nutrient levels, storm intensity, and ocean temperatures. Here we examine genetic variation in individual and population‐level responses of early life history stages (zoospore settlement, survival, and gametogenesis) to increased temperatures to determine the potential for natural selection on temperature‐tolerant individuals that would allow adaptation to a changing climate. We collected fertileM. pyriferasporophyll blades from three sites along the California coast (Los Angeles, Santa Barbara, Monterey Bay) and induced zoospore release in the lab. Spores settled on microscope slides at three treatment temperatures (16, 20, and 22°C), matured for 21 days, and were imaged weekly to determine settlement, survival, and maturation success. On average, individuals from all sites showed lower rates of settlement and maturation in response to increasing temperature. However, the magnitude of the responses to temperature varied among populations. Survival tended to increase with temperature in Los Angeles and Santa Barbara populations but decreased with increasing temperature for the Monterey Bay population. We observed little genetic variation in temperature responses among individuals within sites, suggesting little scope for evolution within populations to increase the resilience ofM. pyriferapopulations to warming ocean temperatures and predicted declines in kelp abundance. Yet sufficient dispersal among populations could allow for adaptation of early life history traits among populations via evolutionary rescue of declining populations. 
    more » « less