skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integrated nonlinear photonics in the longwave-infrared: A roadmap
AbstractThis article presents an overview of the current status and future prospects of integrated nonlinear photonics in the long-wave infrared (LWIR) spectrum, spanning 6 to 14 μm. This range is well-suited for applications such as chemical identification, environmental monitoring, surveillance, search and rescue, and night vision. Nevertheless, the advancement of a mature, low-loss chip-level platform for the LWIR remains in its infancy. We examine the materials growth techniques, and fabrication methods associated with integrated nonlinear photonics in the LWIR, highlighting promising platforms like chalcogenide glass, single-crystalline diamond, Ge/SiGe, and III–V compounds. Furthermore, we explore loss mechanisms, dispersion engineering, nonlinear generation of broadband supercontinuum and frequency combs, and device performance, encompassing photodetectors and modulators. Lastly, we propose a roadmap for the future development of integrated nonlinear photonics in the LWIR. Graphic Abstract  more » « less
Award ID(s):
2349259
PAR ID:
10489579
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
MRS Communications
Volume:
13
Issue:
6
ISSN:
2159-6867
Page Range / eLocation ID:
942 to 956
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The longwave infrared (LWIR) range, which spans from 6 µm to 14 µm, is appealing for sensing due to strong molecular fingerprints in this range. However, the limited availability of low-loss materials that can provide higher-index waveguiding and lower-index cladding in the LWIR range presents challenges for integrated photonics. In this work, we introduce a low-loss germanium-on-zinc selenide (GOZ) platform that could serve as a versatile platform for nanophotonics in the LWIR. By bonding high-quality thin-film germanium (Ge) to a zinc selenide (ZnSe) substrate, we demonstrate transparency from 2 µm to 14 µm and optical losses of just 1 cm−1at 7.8 µm. Our results demonstrate that hybrid photonic platforms could be invaluable for overcoming the losses of epitaxially grown materials and could enable a wide range of future quantum and nonlinear photonics. 
    more » « less
  2. Abstract The longwave infrared (LWIR) region of the spectrum spans 8 to 14 μm and enables high-performance sensing and imaging for detection, ranging, and monitoring. Chip-scale LWIR photonics has enormous potential for real-time environmental monitoring, explosive detection, and biomedicine. However, realizing technologies such as precision sensors and broadband frequency combs requires ultra low-loss and low-dispersion components, which have so far remained elusive in this regime. Here, we use native germanium to demonstrate the first high-quality microresonators in the LWIR. These microresonators are coupled to partially-suspended Ge waveguides on a separate glass chip, allowing for the first unambiguous measurements of isolated linewidths. At 8 μm, we measured losses of 0.5 dB/cm and intrinsic quality (Q) factors of 2.5 × 105, nearly two orders of magnitude higher than prior LWIR resonators. Our work portends the development of novel sensing and nonlinear photonics in the LWIR regime. 
    more » « less
  3. Lithium niobate (LN), an outstanding and versatile material, has influenced our daily life for decades—from enabling high-speed optical communications that form the backbone of the Internet to realizing radio-frequency filtering used in our cell phones. This half-century-old material is currently embracing a revolution in thin-film LN integrated photonics. The successes of manufacturing wafer-scale, high-quality thin films of LN-on-insulator (LNOI) and breakthroughs in nanofabrication techniques have made high-performance integrated nanophotonic components possible. With rapid development in the past few years, some of these thin-film LN devices, such as optical modulators and nonlinear wavelength converters, have already outperformed their legacy counterparts realized in bulk LN crystals. Furthermore, the nanophotonic integration has enabled ultra-low-loss resonators in LN, which has unlocked many novel applications such as optical frequency combs and quantum transducers. In this review, we cover—from basic principles to the state of the art—the diverse aspects of integrated thin-film LN photonics, including the materials, basic passive components, and various active devices based on electro-optics, all-optical nonlinearities, and acousto-optics. We also identify challenges that this platform is currently facing and point out future opportunities. The field of integrated LNOI photonics is advancing rapidly and poised to make critical impacts on a broad range of applications in communication, signal processing, and quantum information. 
    more » « less
  4. Abstract Second-order nonlinear optical processes convert light from one wavelength to another and generate quantum entanglement. Creating chip-scale devices to efficiently control these interactions greatly increases the reach of photonics. Existing silicon-based photonic circuits utilize the third-order optical nonlinearity, but an analogous integrated platform for second-order nonlinear optics remains an outstanding challenge. Here we demonstrate efficient frequency doubling and parametric oscillation with a threshold of tens of micro-watts in an integrated thin-film lithium niobate photonic circuit. We achieve degenerate and non-degenerate operation of the parametric oscillator at room temperature and tune its emission over one terahertz by varying the pump frequency by hundreds of megahertz. Finally, we observe cascaded second-order processes that result in parametric oscillation. These resonant second-order nonlinear circuits will form a crucial part of the emerging nonlinear and quantum photonics platforms. 
    more » « less
  5. Abstract Silicon carbide (SiC)'s nonlinear optical properties and applications to quantum information have recently brought attention to its potential as an integrated photonics platform. However, despite its many excellent material properties, such as large thermal conductivity, wide transparency window, and strong optical nonlinearities, it is generally a difficult material for microfabrication. Here, it is shown that directly bonded silicon‐on‐silicon carbide can be a high‐performing hybrid photonics platform that does not require the need to form SiC membranes or directly pattern in SiC. The optimized bonding method yields defect‐free, uniform films with minimal oxide at the silicon–silicon–carbide interface. Ring resonators are patterned into the silicon layer with standard, complimentary metal–oxide–semiconductor (CMOS) compatible (Si) fabrication and measure room‐temperature, near‐infrared quality factors exceeding 105. The corresponding propagation loss is 5.7 dB cm−1. The process offers a wafer‐scalable pathway to the integration of SiC photonics into CMOS devices. 
    more » « less