skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unidirectional microwave transduction with chirality selected short-wavelength magnon excitations
Nonreciprocal magnon propagation has recently become a highly potential approach of developing chip-embedded microwave isolators for advanced information processing. However, it is challenging to achieve large nonreciprocity in miniaturized magnetic thin-film devices because of the difficulty of distinguishing propagating surface spin waves along the opposite directions when the film thickness is small. In this work, we experimentally realize unidirectional microwave transduction with sub-micrometer-wavelength propagating magnons in a yttrium iron garnet (YIG) thin-film delay line. We achieve a non-decaying isolation of 30 dB with a broad field-tunable bandpass frequency range up to 14 GHz. The large isolation is due to the selection of chiral magnetostatic surface spin waves with the Oersted field generated from the coplanar waveguide antenna. Increasing the geometry ratio between the antenna width and YIG thickness drastically reduces the nonreciprocity and introduces additional magnon transmission bands. Our results pave the way for on-chip microwave isolation and tunable delay line with short-wavelength magnonic excitations.  more » « less
Award ID(s):
2246254
PAR ID:
10489596
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Applied Physics Letters
Volume:
123
Issue:
2
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Magnetic heterostructures consisting of single‐crystal yttrium iron garnet (YIG) films coated with platinum are widely used in spin‐wave experiments related to spintronic phenomena such as the spin‐transfer‐torque, spin‐Hall, and spin‐Seebeck effects. However, spin waves in YIG/Pt bilayers experience much stronger attenuation than in bare YIG films. For micrometer‐thick YIG films, this effect is caused by microwave eddy currents in the Pt layer. This paper reports that by employing an excitation configuration in which the YIG film faces the metal plate of the microstrip antenna structure, the eddy currents in Pt are shunted and the transmission of the Damon–Eschbach surface spin wave is greatly improved. The reduction in spin‐wave attenuation persists even when the Pt coating is separated from the ground plate by a thin dielectric layer. This makes the proposed excitation configuration suitable for injection of an electric current into the Pt layer and thus for application in spintronics devices. The theoretical analysis carried out within the framework of the electrodynamic approach reveals how the platinum nanolayer and the nearby highly conductive metal plate affect the group velocity and the lifetime of the Damon–Eshbach surface wave and how these two wavelength‐dependent quantities determine the transmission characteristics of the spin‐wave device. 
    more » « less
  2. Abstract We demonstrate direct probing of strong magnon–photon coupling using Brillouin light scattering (BLS) spectroscopy in a planar geometry. The magnonic hybrid system comprises a split-ring resonator loaded with epitaxial yttrium iron garnet thin films of 200 nm and 2.46  μ m thickness. The BLS measurements are combined with microwave spectroscopy measurements where both biasing magnetic field and microwave excitation frequency are varied. The cooperativity for the 200 nm-thick YIG films is 1.1, and larger cooperativity of 29.1 is found for the 2.46 μ m-thick YIG film. We show that BLS is advantageous for probing the magnonic character of magnon–photon polaritons, while microwave absorption is more sensitive to the photonic character of the hybrid excitation. A miniaturized, planar device design is imperative for the potential integration of magnonic hybrid systems in future coherent information technologies, and our results are a first stepping stone in this regard. Furthermore, successfully detecting the magnonic hybrid excitation by BLS is an essential step for the up-conversion of quantum signals from the microwave to the optical regime in hybrid quantum systems. 
    more » « less
  3. Abstract Spin waves, collective dynamic magnetic excitations, offer crucial insights into magnetic material properties. Rare‐earth iron garnets offer an ideal spin‐wave (SW) platform with long propagation length, short wavelength, gigahertz frequency, and applicability to magnon spintronic platforms. Of particular interest, thulium iron garnet (TmIG) has attracted huge interest recently due to its successful growth down to a few nanometers, observed topological Hall effect, and spin‐orbit torque‐induced switching effects. However, there is no direct spatial measurement of its SW properties. This work uses diamond nitrogen‐vacancy (NV) magnetometry in combination with SW electrical transmission spectroscopy to study SW transport properties in TmIG thin films. NV magnetometry allows probing spin waves at the sub‐micrometer scale, seen by the amplification of the local microwave magnetic field due to the coupling of NV spin qubits with the stray magnetic field produced by the microwave‐excited spin waves. By monitoring the NV spin resonances, the SW properties in TmIG thin films are measured as a function of the applied magnetic field, including their amplitude, decay length (≈50 µm), and wavelength (0.8–2 µm). These results pave the way for studying spin qubit‐magnon interactions in rare‐earth magnetic insulators, relevant to quantum magnonics applications. 
    more » « less
  4. Improving the photon-magnon coupling strength can be done by tuning the structure of microwave resonators to better interact with the magnon counterpart. Planar resonators accommodating unconventional photon modes beyond the half- and quarter-wavelength designs have been explored due to their optimized mode profiles and potentials for on-chip integration. Here, we designed and fabricated an actively controlled ring resonator supporting the spoof localized surface plasmons (LSPs), and implemented it in the investigation of photon-magnon coupling for hybrid magnonic applications. We demonstrated gain-assisted photon-magnon coupling with the YIG magnon mode under several different sample geometries. The achieved coupling amplification largely benefits from the high quality factor (Q-factor) due to the additional gain provided by a semiconductor amplifier, which effectively increases the Q-factor from a nearly null state (passive resonance) to more than 1000 for a quadrupole LSP mode. Our results suggest an additional control knob for manipulating photon-magnon coupled systems exploiting external controls of gain and loss. 
    more » « less
  5. Yttrium iron garnet (YIG) magnonics has garnered significant research interest because of the unique properties of magnons (quasiparticles of collective spin excitation) for signal processing. In particular, hybrid systems based on YIG magnonics show great promise for quantum information science due to their broad frequency tunability and strong compatibility with other platforms. However, their broad applications have been severely constrained by substantial microwave loss in the gadolinium gallium garnet (GGG) substrate at cryogenic temperatures. In this study, we demonstrate that YIG thin films can be spalled from YIG/GGG samples. Our approach is validated by measuring hybrid devices comprising superconducting resonators and spalled YIG films, which exhibit anti-crossing features that indicate strong coupling between magnons and microwave photons. Such new capability of separating YIG thin films from GGG substrates via spalling and the integrated superconductor-YIG devices represent a significant advancement for integrated magnonic devices, paving the way for advanced magnon-based coherent information processing. 
    more » « less