In this study, we used an alginate-gelatin bioink to design and print 3D constructs with lattice, honeycomb and fibrous bundle patterns. These designs were printed using a small-scale laboratory printer at first, and later translated to a larger scale, high throughput-printing platform. A comparative analysis of the structures printed using two dissimilar platforms using gross morphologic evaluation, scanning electron microscopy and swelling assay confirmed our hypothesis that a design printed using a smallscale laboratory bioprinter for optimization of bioink composition and printing parameters can be successfully translated into a large scale-printing platform for high throughput printing of constructs. Since the designs for printing were implemented using a software which was common across both printers, this endpoint was feasible. The only difference in printing parameters resulted from variation in extrusion pressure which was due to a significant difference in barrel size used across both printers (3 ml versus 30 ml), while all other parameters stayed the same. Although the scaffolds were not bioprinted with cells, in future we will investigate how cell viability can be differentially regulated by the variation of extrusion pressure across both platforms.
more »
« less
Multiscale analysis of Benjamin Franklin’s innovations in American paper money
Benjamin Franklin was a preeminent proponent of the new colonial and Continental paper monetary system in 18th-century America. He established a network of printers, designing and printing money notes at the same time. Franklin recognized the necessity of paper money in breaking American dependence on the British trading system, and he helped print Continental money to finance the American War of Independence. We use a unique combination of nondistractive, microdestructive, and advanced atomic-level imaging methods, including Raman, Infrared, electron energy loss spectroscopy, X-ray diffraction, X-ray fluorescence, and aberration-corrected scanning transmission electron microscopy, to analyze pre-Federal American paper money from the Rare Books and Special Collections of the Hesburgh Library at the University of Notre Dame. We investigate and compare the chemical compositions of the paper fibers, the inks, and fillers made of special crystals in the bills printed by Franklin’s printing network, other colonial printers, and counterfeit money. Our results reveal previously unknown ways that Franklin developed to safeguard printed money notes against counterfeiting. Franklin used natural graphite pigments to print money and developed durable “money paper” with colored fibers and translucent muscovite fillers, along with his own unique designs of “nature-printed” patterns and paper watermarks. These features and inventions made pre-Federal American paper currency an archetype for developing paper money for centuries to come. Our multiscale analysis also provides essential information for the preservation of historical paper money.
more »
« less
- PAR ID:
- 10489609
- Publisher / Repository:
- PNAS
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 120
- Issue:
- 30
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract While three-dimensional (3D) printing has been making significant strides over the past decades, it still trails behind mainstream manufacturing due to its lack of scalability in both print size and print speed. Cooperative 3D printing (C3DP) is an emerging technology that holds the promise to mitigate both of these issues by having a swarm of printhead-carrying mobile robots working together to finish a single print job cooperatively. In our previous work, we have developed a chunk-based printing strategy to enable the cooperative 3D printing with two fused deposition modeling (FDM) mobile 3D printers, which allows each of them to print one chunk at a time without interfering with the other and the printed part. In this paper, we present a novel method in discretizing the continuous 3D printing process, where the desired part is discretized into chunks, resulting in multi-stage 3D printing process. In addition, the key contribution of this study is the first working scaling strategy for cooperative 3D printing based on simple heuristics, called scalable parallel arrays of robots for 3DP (SPAR3), which enables many mobile 3D printers to work together to reduce the total printing time for large prints. In order to evaluate the performance of the printing strategy, a framework is developed based on directed dependency tree (DDT), which provides a mathematical and graphical description of dependency relationships and sequence of printing tasks. The graph-based framework can be used to estimate the total print time for a given print strategy. Along with the time evaluation metric, the developed framework provides us with a mathematical representation of geometric constraints that are temporospatially dynamic and need to be satisfied in order to achieve collision-free printing for any C3DP strategy. The DDT-based evaluation framework is then used to evaluate the proposed SPAR3 strategy. The results validate the SPAR3 as a collision-free strategy that can significantly shorten the printing time (about 11 times faster with 16 robots for the demonstrated examples) in comparison with the traditional 3D printing with single printhead.more » « less
-
You can print anything... or can you? 3D printing is an exciting new technology that promises to very quickly create anything people can design. Scientists who want to make soft robots, like Baymax from Big Hero 6TM, are excited about 3D printers. Our team uses 3D printing to make molds to produce soft robots. Molding is like using a muffin tin to make cupcakes. But can you make anything with 3D printing or are there times when 3D-printed molds do not work? Just like a cupcake liner, 3D-printed molds leave ridges, like a Ruffles potato chip, in soft robots. These ridges are a weak point where cracks can form, causing the robot to pop like a balloon. To prevent this, we sometimes need to make our robots using very smooth molds made from metal. This article talks about when and how 3D printing is useful in making soft robots.more » « less
-
null (Ed.)Purpose The purpose of this research is to develop a new slicing scheme for the emerging cooperative three-dimensional (3D) printing platform that has multiple mobile 3D printers working together on one print job. Design/methodology/approach Because the traditional lay-based slicing scheme does not work for cooperative 3D printing, a chunk-based slicing scheme is proposed to split the print job into chunks so that different mobile printers can print different chunks simultaneously without interfering with each other. Findings A chunk-based slicer is developed for two mobile 3D printers to work together cooperatively. A simulator environment is developed to validate the developed slicer, which shows the chunk-based slicer working effectively, and demonstrates the promise of cooperative 3D printing. Research limitations/implications For simplicity, this research only considered the case of two mobile 3D printers working together. Future research is needed for a slicing and scheduling scheme that can work with thousands of mobile 3D printers. Practical implications The research findings in this work demonstrate a new approach to 3D printing. By enabling multiple mobile 3D printers working together, the printing speed can be significantly increased and the printing capability (for multiple materials and multiple components) can be greatly enhanced. Social implications The chunk-based slicing algorithm is critical to the success of cooperative 3D printing, which may enable an autonomous factory equipped with a swarm of autonomous mobile 3D printers and mobile robots for autonomous manufacturing and assembly. Originality/value This work presents a new approach to 3D printing. Instead of printing layer by layer, each mobile 3D printer will print one chunk at a time, which provides the much-needed scalability for 3D printing to print large-sized object and increase the printing speed. The chunk-based approach keeps the 3D printing local and avoids the large temperature gradient and associated internal stress as the size of the print increases.more » « less
-
We propose a novel system for low-cost multi-color Fused Filament Fabrication (FFF) 3D printing, allowing for the creation of customizable colored filament using a pre-processing approach. We developed an open-source device to automatically ink filament using permanent markers. Our device can be built using 3D printed parts and off-the-shelf electronics. An accompanying web-based interface allows users to view GCODE toolpaths for a multi-color print and quickly generate filament color profiles. Taking a pre-processing approach makes this system compatible with the majority of desktop 3D printers on the market, as the processed filament behaves no differently from conventional filaments. Furthermore, inked filaments can be produced economically, reducing the need for excessive purchasing of material to expand color options. We demonstrate the efficacy of our system by fabricating monochromatic objects, objects with gradient colors, objects with bi-directional properties, as well as multi-color objects with up to four colors in a single print.more » « less
An official website of the United States government

