Regional extent and spatiotemporal dynamics of Arctic permafrost disturbances remain poorly quantified. High spatial resolution commercial satellite imagery enables transformational opportunities to observe, map, and document the micro-topographic transitions occurring in Arctic polygonal tundra at multiple spatial and temporal frequencies. The entire Arctic has been imaged at 0.5 m or finer resolution by commercial satellite sensors. The imagery is still largely underutilized, and value-added Arctic science products are rare. Knowledge discovery through artificial intelligence (AI), big imagery, high performance computing (HPC) resources is just starting to be realized in Arctic science. Large-scale deployment of petabyte-scale imagery resources requires sophisticated computational approaches to automated image interpretation coupled with efficient use of HPC resources. In addition to semantic complexities, multitude factors that are inherent to sub-meter resolution satellite imagery, such as file size, dimensions, spectral channels, overlaps, spatial references, and imaging conditions challenge the direct translation of AI-based approaches from computer vision applications. Memory limitations of Graphical Processing Units necessitates the partitioning of an input satellite imagery into manageable sub-arrays, followed by parallel predictions and post-processing to reconstruct the results corresponding to input image dimensions and spatial reference. We have developed a novel high performance image analysis framework –Mapping application for Arctic Permafrost Land Environment (MAPLE) that enables the integration of operational-scale GeoAI capabilities into Arctic science applications. We have designed the MAPLE workflow to become interoperable across HPC architectures while utilizing the optimal use of computing resources. 
                        more » 
                        « less   
                    
                            
                            BIG IMAGERY AND HIGH PERFORMANCE COMPUTING AS RESOURCES TO UNDERSTAND CHANGING ARCTIC POLYGONAL TUNDRA
                        
                    
    
            Abstract. Permafrost thaw has been observed at several locations across the Arctic tundra in recent decades; however, the pan-Arctic extent and spatiotemporal dynamics of thaw remains poorly explained. Thaw-induced differential ground subsidence and dramatic microtopographic transitions, such as transformation of low-centered ice-wedge polygons (IWPs) into high-centered IWPs can be characterized using very high spatial resolution (VHSR) commercial satellite imagery. Arctic researchers demand for an accurate estimate of the distribution of IWPs and their status across the tundra domain. The entire Arctic has been imaged in 0.5 m resolution by commercial satellite sensors; however, mapping efforts are yet limited to small scales and confined to manual or semi-automated methods. Knowledge discovery through artificial intelligence (AI), big imagery, and high performance computing (HPC) resources is just starting to be realized in Arctic science. Large-scale deployment of VHSR imagery resources requires sophisticated computational approaches to automated image interpretation coupled with efficient use of HPC resources. We are in the process of developing an automated Mapping Application for Permafrost Land Environment (MAPLE) by combining big imagery, AI, and HPC resources. The MAPLE uses deep learning (DL) convolutional neural nets (CNNs) algorithms on HPCs to automatically map IWPs from VHSR commercial satellite imagery across large geographic domains. We trained and tasked a DLCNN semantic object instance segmentation algorithm to automatically classify IWPs from VHSR satellite imagery. Overall, our findings demonstrate the robust performances of IWP mapping algorithm in diverse tundra landscapes and lay a firm foundation for its operational-level application in repeated documentation of circumpolar permafrost disturbances. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1722572
- PAR ID:
- 10489674
- Publisher / Repository:
- Copernicus Publications
- Date Published:
- Journal Name:
- The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
- Volume:
- XLIV-M-2-2020
- ISSN:
- 2194-9034
- Page Range / eLocation ID:
- 111 to 116
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            High-spatial-resolution satellite imagery enables transformational opportunities to observe, map, and document the micro-topographic transitions occurring in Arctic polygonal tundra at multiple spatial and temporal frequencies. Knowledge discovery through artificial intelligence, big imagery, and high-performance computing (HPC) resources is just starting to be realized in Arctic permafrost science. We have developed a novel high-performance image-analysis framework—Mapping Application for Arctic Permafrost Land Environment (MAPLE)—that enables the integration of operational-scale GeoAI capabilities into Arctic permafrost modeling. Interoperability across heterogeneous HPC systems and optimal usage of computational resources are key design goals of MAPLE. We systematically compared the performances of four different MAPLE workflow designs on two HPC systems. Our experimental results on resource utilization, total time to completion, and overhead of the candidate designs suggest that the design of an optimal workflow largely depends on the HPC system architecture and underlying service-unit accounting model.more » « less
- 
            Abstract. The microtopography associated with ice wedge polygons (IWPs) governs the Arctic ecosystem from local to regional scales due to the impacts on the flow and storage of water and therefore, vegetation and carbon. Increasing subsurface temperatures in Arctic permafrost landscapes cause differential ground settlements followed by a series of adverse microtopographic transitions at sub decadal scale. The entire Arctic has been imaged at 0.5 m or finer resolution by commercial satellite sensors. Dramatic microtopographic transformation of low-centered into high-centered IWPs can be identified using sub-meter resolution commercial satellite imagery. In this exploratory study, we have employed a Deep Learning (DL)-based object detection and semantic segmentation method named the Mask R-CNN to automatically map IWPs from commercial satellite imagery. Different tundra vegetation types have distinct spectral, spatial, textural characteristics, which in turn decide the semantics of overlying IWPs. Landscape complexity translates to the image complexity, affecting DL model performances. Scarcity of labelled training images, inadequate training samples for some types of tundra and class imbalance stand as other key challenges in this study. We implemented image augmentation methods to introduce variety in the training data and trained models separately for tundra types. Augmentation methods show promising results but the models with separate tundra types seem to suffer from the lack of annotated data.more » « less
- 
            Climate change pressure on the Arctic permafrost is rising alarmingly, creating a decisive need to produce Pan-Arctic scale permafrost landform and thaw disturbance information from remote sensing (RS) data. Very high spatial resolution (VHSR) satellite images can be utilized to detect ice-wedge polygons (IWPs) – the most important and widespread landform in the Arctic tundra region - across the Arctic without compromising spatial details. Automated analysis of peta-byte scale VHSR imagery covering millions of square kilometers is a computationally challenging task. Traditional semantic segmentation requires the use of task specific feature extraction with conventional classification techniques. Semantic complexity of VHSR images coupled with landscape heterogeneity makes it difficult to use conventional classification approaches to produce Pan-Arctic scale geospatial products. This leads to adapting deep convolutional neural network (DLCNN) approaches that have excelled in computer vision (CV) applications. Transitioning domains from everyday image understanding to remote sensing image analysis is challenging. This study aims to systematically investigate two main obstacles confronted when adapting DLCNNs in large-scale RS image analysis tasks; 1) the limited availability labeled data sets and 2) the prohibitive nature of hyperparameter tunning when designing DLCNNs that can capture the rich characteristics embedded in remotely-sensed images. With a case study on the production of the first pan-Arctic ice-wedge polygon map using thousands of VHSR images, we demonstrate the use of transfer learning and the impact of hyperparameter tuning with a 16% improvement of the Mean Average Precision (mAP50).more » « less
- 
            The accelerated warming conditions of the high Arctic have intensified the extensive thawing of permafrost. Retrogressive thaw slumps (RTSs) are considered as the most active landforms in the Arctic permafrost. An increase in RTSs has been observed in the Arctic in recent decades. Continuous monitoring of RTSs is important to understand climate change-driven disturbances in the region. Manual detection of these landforms is extremely difficult as they occur over exceptionally large areas. Only very few studies have explored the utility of very high spatial resolution (VHSR) commercial satellite imagery in the automated mapping of RTSs. We have developed deep learning (DL) convolution neural net (CNN) based workflow to automatically detect RTSs from VHRS satellite imagery. This study systematically compared the performance of different DLCNN model architectures and varying backbones. Our candidate CNN models include: DeepLabV3+, UNet, UNet++, Multi-scale Attention Net (MA-Net), and Pyramid Attention Network (PAN) with ResNet50, ResNet101 and ResNet152 backbones. The RTS modeling experiment was conducted on Banks Island and Ellesmere Island in Canada. The UNet++ model demonstrated the highest accuracy (F1 score of 87%) with the ResNet50 backbone at the expense of training and inferencing time. PAN, DeepLabV3, MaNet, and UNet, models reported mediocre F1 scores of 72%, 75%, 80%, and 81% respectively. Our findings unravel the performances of different DLCNNs in imagery-enabled RTS mapping and provide useful insights on operationalizing the mapping application across the Arctic.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    