skip to main content


Title: OPERATIONAL-SCALE GEOAI FOR PAN-ARCTIC PERMAFROST FEATURE DETECTION FROM HIGH-RESOLUTION SATELLITE IMAGERY
Regional extent and spatiotemporal dynamics of Arctic permafrost disturbances remain poorly quantified. High spatial resolution commercial satellite imagery enables transformational opportunities to observe, map, and document the micro-topographic transitions occurring in Arctic polygonal tundra at multiple spatial and temporal frequencies. The entire Arctic has been imaged at 0.5 m or finer resolution by commercial satellite sensors. The imagery is still largely underutilized, and value-added Arctic science products are rare. Knowledge discovery through artificial intelligence (AI), big imagery, high performance computing (HPC) resources is just starting to be realized in Arctic science. Large-scale deployment of petabyte-scale imagery resources requires sophisticated computational approaches to automated image interpretation coupled with efficient use of HPC resources. In addition to semantic complexities, multitude factors that are inherent to sub-meter resolution satellite imagery, such as file size, dimensions, spectral channels, overlaps, spatial references, and imaging conditions challenge the direct translation of AI-based approaches from computer vision applications. Memory limitations of Graphical Processing Units necessitates the partitioning of an input satellite imagery into manageable sub-arrays, followed by parallel predictions and post-processing to reconstruct the results corresponding to input image dimensions and spatial reference. We have developed a novel high performance image analysis framework –Mapping application for Arctic Permafrost Land Environment (MAPLE) that enables the integration of operational-scale GeoAI capabilities into Arctic science applications. We have designed the MAPLE workflow to become interoperable across HPC architectures while utilizing the optimal use of computing resources.

 
more » « less
Award ID(s):
1722572 1927872
NSF-PAR ID:
10468158
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Date Published:
Journal Name:
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Volume:
XLIV-M-3-2021
ISSN:
2194-9034
Page Range / eLocation ID:
175 to 180
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Permafrost thaw has been observed at several locations across the Arctic tundra in recent decades; however, the pan-Arctic extent and spatiotemporal dynamics of thaw remains poorly explained. Thaw-induced differential ground subsidence and dramatic microtopographic transitions, such as transformation of low-centered ice-wedge polygons (IWPs) into high-centered IWPs can be characterized using very high spatial resolution (VHSR) commercial satellite imagery. Arctic researchers demand for an accurate estimate of the distribution of IWPs and their status across the tundra domain. The entire Arctic has been imaged in 0.5 m resolution by commercial satellite sensors; however, mapping efforts are yet limited to small scales and confined to manual or semi-automated methods. Knowledge discovery through artificial intelligence (AI), big imagery, and high performance computing (HPC) resources is just starting to be realized in Arctic science. Large-scale deployment of VHSR imagery resources requires sophisticated computational approaches to automated image interpretation coupled with efficient use of HPC resources. We are in the process of developing an automated Mapping Application for Permafrost Land Environment (MAPLE) by combining big imagery, AI, and HPC resources. The MAPLE uses deep learning (DL) convolutional neural nets (CNNs) algorithms on HPCs to automatically map IWPs from VHSR commercial satellite imagery across large geographic domains. We trained and tasked a DLCNN semantic object instance segmentation algorithm to automatically classify IWPs from VHSR satellite imagery. Overall, our findings demonstrate the robust performances of IWP mapping algorithm in diverse tundra landscapes and lay a firm foundation for its operational-level application in repeated documentation of circumpolar permafrost disturbances.

     
    more » « less
  2. High-spatial-resolution satellite imagery enables transformational opportunities to observe, map, and document the micro-topographic transitions occurring in Arctic polygonal tundra at multiple spatial and temporal frequencies. Knowledge discovery through artificial intelligence, big imagery, and high-performance computing (HPC) resources is just starting to be realized in Arctic permafrost science. We have developed a novel high-performance image-analysis framework—Mapping Application for Arctic Permafrost Land Environment (MAPLE)—that enables the integration of operational-scale GeoAI capabilities into Arctic permafrost modeling. Interoperability across heterogeneous HPC systems and optimal usage of computational resources are key design goals of MAPLE. We systematically compared the performances of four different MAPLE workflow designs on two HPC systems. Our experimental results on resource utilization, total time to completion, and overhead of the candidate designs suggest that the design of an optimal workflow largely depends on the HPC system architecture and underlying service-unit accounting model. 
    more » « less
  3. Rapid global warming is catalyzing widespread permafrost degradation in the Arctic, leading to destructive land-surface subsidence that destabilizes and deforms the ground. Consequently, human-built infrastructure constructed upon permafrost is currently at major risk of structural failure. Risk assessment frameworks that attempt to study this issue assume that precise information on the location and extent of infrastructure is known. However, complete, high-quality, uniform geospatial datasets of built infrastructure that are readily available for such scientific studies are lacking. While imagery-enabled mapping can fill this knowledge gap, the small size of individual structures and vast geographical extent of the Arctic necessitate large volumes of very high spatial resolution remote sensing imagery. Transforming this ‘big’ imagery data into ‘science-ready’ information demands highly automated image analysis pipelines driven by advanced computer vision algorithms. Despite this, previous fine resolution studies have been limited to manual digitization of features on locally confined scales. Therefore, this exploratory study serves as the first investigation into fully automated analysis of sub-meter spatial resolution satellite imagery for automated detection of Arctic built infrastructure. We tasked the U-Net, a deep learning-based semantic segmentation model, with classifying different infrastructure types (residential, commercial, public, and industrial buildings, as well as roads) from commercial satellite imagery of Utqiagvik and Prudhoe Bay, Alaska. We also conducted a systematic experiment to understand how image augmentation can impact model performance when labeled training data is limited. When optimal augmentation methods were applied, the U-Net achieved an average F1 score of 0.83. Overall, our experimental findings show that the U-Net-based workflow is a promising method for automated Arctic built infrastructure detection that, combined with existing optimized workflows, such as MAPLE, could be expanded to map a multitude of infrastructure types spanning the pan-Arctic.

     
    more » « less
  4. The microtopography associated with ice-wedge polygons governs many aspects of Arctic ecosystem, permafrost, and hydrologic dynamics from local to regional scales owing to the linkages between microtopography and the flow and storage of water, vegetation succession, and permafrost dynamics. Wide-spread ice-wedge degradation is transforming low-centered polygons into high-centered polygons at an alarming rate. Accurate data on spatial distribution of ice-wedge polygons at a pan-Arctic scale are not yet available, despite the availability of sub-meter-scale remote sensing imagery. This is because the necessary spatial detail quickly produces data volumes that hamper both manual and semi-automated mapping approaches across large geographical extents. Accordingly, transforming big imagery into ‘science-ready’ insightful analytics demands novel image-to-assessment pipelines that are fueled by advanced machine learning techniques and high-performance computational resources. In this exploratory study, we tasked a deep-learning driven object instance segmentation method (i.e., the Mask R-CNN) with delineating and classifying ice-wedge polygons in very high spatial resolution aerial orthoimagery. We conducted a systematic experiment to gauge the performances and interoperability of the Mask R-CNN across spatial resolutions (0.15 m to 1 m) and image scene contents (a total of 134 km2) near Nuiqsut, Northern Alaska. The trained Mask R-CNN reported mean average precisions of 0.70 and 0.60 at thresholds of 0.50 and 0.75, respectively. Manual validations showed that approximately 95% of individual ice-wedge polygons were correctly delineated and classified, with an overall classification accuracy of 79%. Our findings show that the Mask R-CNN is a robust method to automatically identify ice-wedge polygons from fine-resolution optical imagery. Overall, this automated imagery-enabled intense mapping approach can provide a foundational framework that may propel future pan-Arctic studies of permafrost thaw, tundra landscape evolution, and the role of high latitudes in the global climate system. 
    more » « less
  5. Retrogressive thaw slumps (RTS) are considered one of the most dynamic permafrost disturbance features in the Arctic. Sub-meter resolution multispectral imagery acquired by very high spatial resolution (VHSR) commercial satellite sensors offer unique capacities in capturing the morphological dynamics of RTSs. The central goal of this study is to develop a deep learning convolutional neural net (CNN) model (a UNet-based workflow) to automatically detect and characterize RTSs from VHSR imagery. We aimed to understand: (1) the optimal combination of input image tile size (array size) and the CNN network input size (resizing factor/spatial resolution) and (2) the interoperability of the trained UNet models across heterogeneous study sites based on a limited set of training samples. Hand annotation of RTS samples, CNN model training and testing, and interoperability analyses were based on two study areas from high-Arctic Canada: (1) Banks Island and (2) Axel Heiberg Island and Ellesmere Island. Our experimental results revealed the potential impact of image tile size and the resizing factor on the detection accuracies of the UNet model. The results from the model transferability analysis elucidate the effects on the UNet model due the variability (e.g., shape, color, and texture) associated with the RTS training samples. Overall, study findings highlight several key factors that we should consider when operationalizing CNN-based RTS mapping over large geographical extents. 
    more » « less