Abstract The western U.S. is experiencing increasing rain to snow ratios due to climate change, and scientists are uncertain how changing recharge patterns will affect future groundwater‐surface water connection. We examined how watershed topography and streambed hydraulic conductivity impact groundwater age and stream discharge at eight sites along a headwater stream within the Manitou Experimental Forest, CO USA. To do so, we measured: (a) continuous stream and groundwater discharge/level and specific conductivity from April to November 2021; (b) biweekly stream and groundwater chemistry; (c) groundwater chlorofluorocarbons and tritium in spring and fall; (d) streambed hydraulic conductivity; and (e) local slope. We used the chemistry data to calculate fluorite saturation states that were used to inform end‐member mixing analysis of streamflow source. We then combined chlorofluorocarbon and tritium data to estimate the age composition of riparian groundwater. Our data suggest that future stream drying is more probable where local slope is steep and streambed hydraulic conductivity is high. In these areas, groundwater source shifted seasonally, as indicated by age increases, and we observed a high fraction of groundwater in streamflow, primarily interflow from adjacent hillslopes. In contrast, where local slope is flat and streambed hydraulic conductivity is low, streamflow is more likely to persist as groundwater age was seasonally constant and buffered by storage in alluvial sediments. Groundwater age and streamflow paired with characterization of watershed topography and subsurface characteristics enabled identification of likely controls on future stream drying patterns.
more »
« less
Water‐rock interactions drive chemostasis
Abstract The western U.S. is experiencing shifts in recharge due to climate change, and it is currently unclear how hydrologic shifts will impact geochemical weathering and stream concentration–discharge (C–Q) patterns. Hydrologists often useC–Qanalyses to assess feedbacks between stream discharge and geochemistry, given abundant stream discharge and chemistry data. Chemostasis is commonly observed, indicating that geochemical controls, rather than changes in discharge, are shaping streamC–Qpatterns. However, fewC–Qstudies investigate how geochemical reactions evolve along groundwater flowpaths before groundwater contributes to streamflow, resulting in potential omission of importantC–Qcontrols such as coupled mineral dissolution and clay precipitation and subsequent cation exchange. Here, we use field observations—including groundwater age, stream discharge, and stream and groundwater chemistry—to analyseC–Qrelations in the Manitou Experimental Forest in the Colorado Front Range, USA, a site where chemostasis is observed. We combine field data with laboratory analyses of whole rock and clay x‐ray diffraction and soil cation‐extraction experiments to investigate the role that clays play in influencing stream chemistry. We use Geochemist's Workbench to identify geochemical reactions driving stream chemistry and subsequently suggest how climate change will impact streamC–Qtrends. We show that as groundwater age increases,C–Qslope and stream solute response are not impacted. Instead, primary mineral dissolution and subsequent clay precipitation drive strong chemostasis for silica and aluminium and enable cation exchange that buffers calcium and magnesium concentrations, leading to weak chemostatic behaviour for divalent cations. The influence of clays on streamC–Qhighlights the importance of delineating geochemical controls along flowpaths, as upgradient mineral dissolution and clay precipitation enable downgradient cation exchange. Our results suggest that geochemical reactions will not be impacted by future decreasing flows, and thus where chemostasis currently exists, it will continue to persist despite changes in recharge.
more »
« less
- Award ID(s):
- 2012730
- PAR ID:
- 10489844
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Hydrological Processes
- Volume:
- 38
- Issue:
- 2
- ISSN:
- 0885-6087
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Kumar, Bimlesh (Ed.)Austin, Texas is among the most rapidly urbanizing regions in the U.S., posing challenges to the resilience of its water resources. Geochemical differences between stream water from relatively pristine (rural) and impacted (urban) watersheds indicate several distinct controls on stream water compositions, including extent of urbanization, extent of failure of the city’s municipal water infrastructure, and differences in bedrock composition and permeability. We focus here on the largely unstudied evolution of municipal water once it leaves the infrastructure and enters the natural hydrologic system as groundwater and/or surface water. We use the distinct Sr isotope values (87Sr/86Sr) and other compositional differences between municipal waters, natural stream and spring water, limestone bedrock, and soils as tracers of the sources of and processes by which four Austin-area streams and springs acquire their dissolved constituents. These processes include 1) fluid-mixing between municipal and natural surface water and groundwater, 2) multiple mineral-solution reactions, including dissolution and water-rock interaction (WRI) processes of precipitation, incongruent dissolution, and recrystallization, and 3) varying groundwater residence times. Stream water in two urbanized watersheds have high87Sr/86Sr values and ion compositions close to values for municipal water, whereas stream and spring water in two rural watersheds have compositions close to natural stream water. Urbanized stream water compositions can be accounted for by models of municipal water contributions followed by dissolution of bedrock minerals. By contrast, rural stream water compositions are consistent with a model sequence of dissolution followed by extensive WRI with limestone. The results of this study indicate significant contributions to streams from the municipal infrastructure. We find that the evolution of this municipal water in the natural hydrologic system comprises multiple fluid-mixing processes and mineral-solution reactions, which are influenced by differences in bedrock geology. This composite evolution advances our understanding of the complexities of “Urban Stream Syndrome”.more » « less
-
Groundwater in the McMurdo Dry Valleys of Antarctica is commonly enriched in calcium and chloride, in contrast to surface and groundwater in temperate regions, where calcium chemistry is largely controlled by the dissolution of carbonates and sulfates. These Antarctic Ca-Cl brines have extremely low freezing points, which leads to moist soil conditions that persist unfrozen and resist evaporation, even in cold, arid conditions. Several hypotheses exist to explain these unusual excess-calcium solutions, including salt deliquescence and differential salt mobility and cation exchange. Although the cation exchange mechanism was shown to explain the chemistry of pore waters in permafrost cores from several meters depth, it has not been evaluated for near-surface groundwater and wetland features (water tracks) in which excess-calcium pore-water solutions are common. Here, we use soluble salt and exchangeable cation concentrations to determine whether excess calcium is present in water-track brines and if cation exchange could be responsible for calcium enrichment in these cold desert groundwaters. We show that calcium enrichment by cation exchange is not occurring universally across the McMurdo Dry Valleys. Instead, evidence of the present-day formation of Ca-Cl−rich brines by cation exchange is focused in a geographically specific location in Taylor Valley, with hydrological position, microclimate, soil depth, and organic matter influencing the spatial extent of cation exchange reactions. Up-valley sites may be too cold and dry for widespread exchange, and warm and wet coastal sites are interpreted to host sediments whose exchange reactions have already gone to completion. We argue that exchangeable cation ratios can be used as a signature of past freeze-concentration of brines and exchange reactions, and thus could be considered a geochemical proxy for past groundwater presence in planetary permafrost settings. Correlations between water-track organic matter, fine sediment concentration, and cation exchange capacity suggest that water tracks may be sites of enhanced biogeochemical cycling in cold desert soils and serve as a model for predicting how active layers in the Antarctic will participate in biogeochemical cycling during periods of future thaw.more » « less
-
Abstract Non-perennial rivers and streams make up over half the global river network and are becoming more widespread. Transitions from perennial to non-perennial flow are a threshold-type change that can lead to alternative stable states in aquatic ecosystems, but it is unknown whether streamflow itself is stable in either wet (flowing) or dry (no-flow) conditions. Here, we investigated drivers and feedbacks associated with regime shifts between wet and dry conditions in an intermittent reach of the Arkansas River (USA) over the past 23 years. Multiple lines of evidence suggested that these regimes represent alternative stable states, including (a) significant jumps in discharge time series that were not accompanied by jumps in flow drivers such as precipitation and groundwater pumping; (b) a multi-modal state distribution with 92% of months experiencing no-flow conditions for <10% or >90% of days, despite unimodal distributions of precipitation and pumping; and (c) a hysteretic relationship between climate and flow state. Groundwater levels appear to be the primary control over the hydrological regime, as groundwater levels in the alluvial aquifer were higher than the stream stage during wet regimes and lower than the streambed during dry regimes. Groundwater level variation, in turn, was driven by processes occurring at both the regional scale (surface water inflows from upstream, groundwater pumping) and the reach scale (stream–aquifer exchange, diffuse recharge through the soil column). Historical regime shifts were associated with diverse pressures including network disconnection caused by upstream water use, increased flow stability potentially associated with reservoir operations, and anomalous wet and dry climate conditions. In sum, stabilizing feedbacks among upstream inflows, stream–aquifer interactions, climate, vegetation, and pumping appear to create alternative wet and dry stable states at this site. These stabilizing feedbacks suggest that widespread observed shifts from perennial to non-perennial flow will be difficult to reverse.more » « less
-
Abstract Understanding relationships between stream chemistry and watershed factors: land use/land cover, climate, and lithology are crucial to improving our knowledge of critical zone processes that influence water quality. We compiled major ion data from >100 monitoring stations collected over 60 years (1958–2018) across the Colorado River Watershed in Texas (103,000 km2). We paired this river chemistry data with complementary lithology, land use, climate, and stream discharge information. Machine learning techniques were used to produce new insights on controls of stream water chemical behavior, which were validated using traditional multivariate analyses. Studies on stream flow and chemistry in the American west and globally have shown strong relationships between major ion chemical composition, climate, and lithology which hold true for the Colorado River basin in this study. Reactive minerals, including carbonates and evaporites, dominate major ion chemistry across the upper, low‐precipitation regions of the watershed. Upstream and middle reaches of the Colorado River showed shifts from Na‐Cl‐SO4dominated water from multiple sources including dissolution of gypsum and halite in shallow groundwater, and agricultural activities, to Ca‐HCO3water types controlled by carbonate dissolution. In the lower portion of the watershed multiple analyses demonstrate that stream chemistry is more influenced by greater precipitation and the presence of silicate minerals than the middle and upstream reaches. This study demonstrates the power of applying machine learning approaches to publicly available long term water chemistry data sets to improve the understanding of watershed interactions with surficial lithology, salinity sources, and anthropogenic influences of water quality.more » « less
An official website of the United States government
