skip to main content


Title: A Mixed‐Integer Linear Programming Framework for Optimization of Water Network Operations Problems
Abstract

Water distribution systems (WDSs) are critical infrastructure used to convey water from sources to consumers. The mathematical framework governing the distribution of flows and heads in extended period simulations of WDSs lends itself to application in a wide range of optimization problems. Applying the classical mixed integer linear programming (MILP) approach to model WDSs hydraulics within an optimization framework can contribute to higher solution accuracy with lower computational effort. However, adapting WDSs models to conform to a MILP formulation has proven challenging because of the intrinsic non‐linearity of system hydraulics and the complexity associated with modeling hydraulic devices that influence the state of the WDS. This paper introduces MILPNet, an adjustable framework for WDSs that can be used to build and solve an extensive array of MILP optimization problems. MILPNet includes constraints that represent the mass balance and energy conservation equations, hydraulic devices, control rules, and status checks. To conform to MILP structure, MILPNet employs piece‐wise linear approximation and integer programming. MILPNet was implemented and tested using Gurobi Python API. Modeling accuracy was shown to be comparable to EPANET, a public domain software for hydraulic modeling, and sensitivity analyses were conducted to examine the impacts of the modeling assumptions on the performance of MILPNet. Additionally, application of the framework was demonstrated using pump scheduling optimization examples in single and rolling horizon scenarios. Our results show that MILPNet can facilitate the construction and solution of optimization problems for a range of applications in WDSs operations.

 
more » « less
NSF-PAR ID:
10489919
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
60
Issue:
2
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The widespread deployment of smart heterogeneous technologies and the growing complexity in our modern society calls for effective coordination of the interdependent lifeline networks. In particular, operation coordination of electric power and water infrastructures is urgently needed as the water system is one of the most energy-intensive networks, an interruption in which may quickly evolve into a dramatic societal concern. The closely-intertwined ecosystem of water and power infrastructures is commonly known as water-energy nexus. This paper develops a novel analytic for uncertainty-aware day-ahead operation optimization of the interconnected power and water systems (PaWS). Joint probabilistic constraint (JPC) programming is employed to capture the uncertainties in wind resources and water demand forecasts. The proposed integrated stochastic model is presented as a non-linear non-convex optimization problem, where the non-linear hydraulic constraints in the water network are linearized using piece-wise linearization technique, and the non-convexity is efficiently tackled with a Boolean solution methodology to convert the proposed model with JPCs to a tractable mixed-integer linear programming (MILP) formulation that can be quickly solved to optimality. The suggested framework is applied to a 15-node commercial-scale water network jointly operated with a power transmission system using a modified IEEE 57-bus test system. The numerical results demonstrate the of the proposed stochastic framework, resulting in cost reduction (13% on average when compared to the traditional setting) and energy saving of the integrated model under different realizations of uncertain renewable energy sources (RESs) and water demand scenarios. Additionally, the scalability of the proposed model is tested on a modified IEEE 118-bus test system connected to five water networks. 
    more » « less
  2. For fast timescales or long prediction horizons, the AC optimal power flow (OPF) problem becomes a computational challenge for large-scale, realistic AC networks. To overcome this challenge, this paper presents a novel network reduction methodology that leverages an efficient mixed-integer linear programming (MILP) formulation of a Kron-based reduction that is optimal in the sense that it balances the degree of the reduction with resulting modeling errors in the reduced network. The method takes as inputs the full AC network and a pre-computed library of AC load flow data and uses the graph Laplacian to constraint nodal reductions to only be feasible for neighbors of non-reduced nodes. This results in a highly effective MILP formulation which is embedded within an iterative scheme to successively improve the Kron-based network reduction until convergence. The resulting optimal network reduction is, thus, grounded in the physics of the full network. The accuracy of the network reduction methodology is then explored for a 100+ node medium-voltage radial distribution feeder example across a wide range of operating conditions. It is finally shown that a network reduction of 25-85% can be achieved within seconds and with worst-case voltage magnitude deviation errors within any super node cluster of less than 0.01pu. These results illustrate that the proposed optimization-based approach to Kron reduction of networks is viable for larger networks and suitable for use within various power system applications. 
    more » « less
  3. This article addresses the operational optimization of industrial steam systems under device efficiency uncertainty using a data‐driven adaptive robust optimization approach. A semiempirical model of steam turbine is first developed based on process mechanism and operational data. Uncertain parameters of the proposed steam turbine model are further derived from the historical process data. A robust kernel density estimation method is then used to construct the uncertainty sets for modeling these uncertain parameters. The data‐driven uncertainty sets are incorporated into a two‐stage adaptive robust mixed‐integer linear programming (MILP) framework for operational optimization of steam systems to minimize the total operating cost. Integer variables are introduced to model the on/off decisions of the steam turbines and electrical motors, which are the major energy consumers of the steam system. By applying the affine decision rule, the proposed multilevel optimization model is transformed into its robust counterpart, which is a single‐level MILP problem. The proposed framework is applied to the steam system of a real‐world ethylene plant to demonstrate its applicability. © 2018 American Institute of Chemical EngineersAIChE J, 65: e16500 2019

     
    more » « less
  4. While mixed integer linear programming (MILP) solvers are routinely used to solve a wide range of important science and engineering problems, it remains a challenging task for end users to write correct and efficient MILP constraints, especially for problems specified using the inherently non-linear Boolean logic operations. To overcome this challenge, we propose a syntax guided synthesis (SyGuS) method capable of generating high-quality MILP constraints from the specifications expressed using arbitrary combinations of Boolean logic operations. At the center of our method is an extensible domain specification language (DSL) whose expressiveness may be improved by adding new integer variables as decision variables, together with an iterative procedure for synthesizing linear constraints from non-linear Boolean logic operations using these integer variables. To make the synthesis method efficient, we also propose an over-approximation technique for soundly proving the correctness of the synthesized linear constraints, and an under-approximation technique for safely pruning away the incorrect constraints. We have implemented and evaluated the method on a wide range of benchmark specifications from statistics, machine learning, and data science applications. The experimental results show that the method is efficient in handling these benchmarks, and the quality of the synthesized MILP constraints is close to, or higher than, that of manually-written constraints in terms of both compactness and solving time.

     
    more » « less
  5. null (Ed.)
    Job shops are an important production environment for low-volume high-variety manufacturing. Its scheduling has recently been formulated as an Integer Linear Programming (ILP) problem to take advantages of popular Mixed-Integer Linear Programming (MILP) methods, e.g., branch-and-cut. When considering a large number of parts, MILP methods may combinatorial difficulties. To address this, a critical but much overlooked issue is formulation tightening. The idea is that if problem constraints can be transformed to directly delineate the problem convex hull in the data preprocessing stage, then a solution can be obtained by using linear programming methods without combinatorial difficulties. The tightening process, however, is fundamentally challenging because of the existence of integer variables. In this paper, an innovative and systematic approach is established for the first time to tighten the formulations of individual parts, each with multiple operations, in the data preprocessing stage. It is a major advancement of our previous work on problems with binary and continuous variables to integer variables. The idea is to first link integer variables to binary variables by innovatively combining constraints so that the integer variables are uniquely determined by the binary variables. With binary and continuous variables only, it is proved that the vertices of the convex hull can be obtained based on vertices of the linear problem after relaxing binary requirements. These vertices are then converted to tightened constraints for general use. This approach significantly improves our previous results on tightening individual operations. Numerical results demonstrate significant benefits on solution quality and computational efficiency. This approach also applies to other ILP problems with similar characteristics and fundamentally changes the way how such problems are formulated and solved. 
    more » « less