Abstract Climate change poses a growing threat to many ecosystems, including grasslands, which are a current priority for conservation due to their vulnerability to interacting threats from human activity.North American grasslands are expected to experience warmer temperatures and more frequent and severe droughts in the coming decades, with potential consequences for native biodiversity.We conducted an experiment at Cedar Creek Ecosystem Science Reserve, Minnesota, USA, to investigate how warming and drought treatments affected grassland plant community structure over 6 years in plots planted with species mixtures.Warming consistently reduced plant species richness with its effects on Shannon diversity (which additionally considers species' relative abundances) and dominance varying across years. These warming‐by‐year interactions were likely driven by temporal variability in environmental conditions and species‐specific responses. Notably, legumes consistently showed positive responses to warming.Drought alone had minimal direct effects on species richness and diversity but reduced variability in diversity responses over time, suggesting greater stability of diversity under drought conditions.Synthesis. This study underscores the important role of warming in reducing species richness, altering diversity and reshaping functional group composition in grassland ecosystems. While temporal variability influenced the magnitude of warming effects on diversity, legumes' positive responses highlight the importance of functional group dynamics in potentially buffering against species loss. Long‐term experiments that allow consideration of interannual variability are essential for improving predictions of ecosystem responses and informing adaptive management strategies aimed at sustaining biodiversity and ecosystem functioning in grasslands.
more »
« less
Home‐field advantage, N‐priming and precipitation independently govern litter decomposition in a plant diversity manipulation
Abstract Litter decomposition facilitates the recycling of often limiting resources, which may promote plant productivity responses to diversity, that is, overyielding. However, the direct relationship between decomposition,k, and overyielding remains underexplored in grassland diversity manipulations.We test whether local adaptation of microbes, that is, home‐field advantage (HFA), N‐priming from plant inputs or precipitation drive decomposition and whether decomposition generates overyielding. Within a grassland diversity‐manipulation, altering plant richness (1, 2, 3 and 6 species), composition (communities composed of plants from a single‐family or multiple‐families) and precipitation (50% and 150% ambient growing season precipitation), we conducted a litter decomposition experiment. In spring 2020, we deployed four replicate switchgrass,Panicum virgatum, litter bags (1.59 mm mesh opening), collecting them over 7 months to estimate litterk.Precipitation was a strong, independent driver of decomposition. Switchgrass decomposition accelerated with grass richness and decelerated as phylogenetic dissimilarity from switchgrass increased, suggesting decomposition is fastest at ‘home’. However, decomposition slowed with switchgrass density. In plots that contained switchgrass, we observed no relationship between decomposition and fungal saprotroph dissimilarity from switchgrass. However, in plots without switchgrass, decomposition slowed with increasing saprotroph dissimilarity from switchgrass. Combined these findings suggest that HFA is strongest when closely related neighbours, that is, heterospecific neighbours, are present in the community, rather than other individuals of the same species, that is, conspecifics. Legumes accelerated decomposition with more litter N remaining in those plots, suggesting that N‐inputs from planted legumes are priming decomposition of litter C. However, decomposition and overyielding were unrelated in legume communities. While in grass communities, overyielding and decomposition were positively related and the relationship was strongest in plots with low densities of switchgrass, that is, with heterospecific neighbours.Combined these findings suggest that plant species richness and community composition stimulate litter decomposition through multiple mechanisms, including N‐priming, but only HFA from local adaptation of microbes on closely related species correlates with overyielding, likely through resource recycling. Our results link diversity with ecosystem processes facilitating above‐ground productivity. Whether diversity loss will affect litter decomposition, productivity or both is contingent on resident plant traits and whether a locally adapted soil microbiome is maintained. Read the freePlain Language Summaryfor this article on the Journal blog.
more »
« less
- PAR ID:
- 10489975
- Publisher / Repository:
- Functional Ecology
- Date Published:
- Journal Name:
- Functional Ecology
- ISSN:
- 0269-8463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Improved understanding of bacterial community responses to multiple environmental filters over long time periods is a fundamental step to develop mechanistic explanations of plant–bacterial interactions as environmental change progresses.This is the first study to examine responses of grassland root‐associated bacterial communities to 15 years of experimental manipulations of plant species richness, functional group and factorial enrichment of atmospheric CO2(eCO2) and soil nitrogen (+N).Across the experiment, plant species richness was the strongest predictor of rhizobacterial community composition, followed by +N, with no observed effect of eCO2. Monocultures of C3and C4grasses and legumes all exhibited dissimilar rhizobacterial communities within and among those groups. Functional responses were also dependent on plant functional group, where N2‐fixation genes, NO3−‐reducing genes and P‐solubilizing predicted gene abundances increased under resource‐enriched conditions for grasses, but generally declined for legumes. In diverse plots with 16 plant species, the interaction of eCO2+N altered rhizobacterial composition, while +N increased the predicted abundance of nitrogenase‐encoding genes, and eCO2+N increased the predicted abundance of bacterial P‐solubilizing genes.Synthesis: Our findings suggest that rhizobacterial community structure and function will be affected by important global environmental change factors such as eCO2, but these responses are primarily contingent on plant species richness and the selective influence of different plant functional groups.more » « less
-
Abstract Fungal necromass is increasingly recognized as a key component of soil carbon (C) and nitrogen (N) cycling. However, how C and N loss from fungal necromass during decomposition is impacted by global change factors such as anthropogenic N addition and changes to soil C supply (e.g. via changing root exudation and rhizosphere priming) remains unclear and understudied relative to plant tissues.To address these gaps, we conducted a year‐long decomposition experiment with four species of fungal necromass incubated across four forested sites in plots that had received inorganic N and/or labile C fertilization for two decades in Minnesota, USA.We found that necromass chemistry was the primary driver of C and N loss from fungal necromass as well as the response to fertilization. Specifically, N addition suppressed late‐stage decomposition, but this effect was weaker in melanin‐rich necromass, contrary to the hypothesis based on plant litter dynamics that N addition should suppress the decomposition of more complex organic molecules. Labile C addition had no effect on either the early or late stages of necromass decomposition.Nitrogen release from necromass also varied among species, with N‐poor necromass having lower N release after controlling for differences in mass loss via regression. The relatively minor effects of N fertilization on the proportion of initial necromass N released suggest that N demand by decomposers is the primary control on N loss during fungal necromass decomposition.Synthesis. Together, our results stress the importance of the afterlife effects of fungal chemical composition to forest soil C and N cycles. Further, they demonstrate that C and N release from this critical pool can be reduced by ongoing anthropogenic N addition.more » « less
-
Abstract Climate change is causing marked shifts to historic environmental regimes, including increases in precipitation events (droughts and highly wet periods). Relative to droughts, the impacts of wet events have received less attention, despite heavy rainfall events increasing over the past century. Further, impacts of wet and dry events are often evaluated independently; yet, to persist and maintain their ecosystem functions, plant communities must be resilient to both precipitation events. This is particularly critical because while community properties can modulate the resilience (resistance, recovery, and invariability) of ecosystem functions to precipitation events, community properties can also respond to precipitation events. As a result, community responses to wet and dry years may impact the community's resilience to future events.Using two decades (2000–2020) of annual net primary productivity data from early successional grassland communities, we evaluated the plant community properties regulating primary productivity resistance and recovery to contrasting precipitation events and invariability (i.e. long‐term stability). We then explored how resilience‐modulating community properties responded to precipitation.We found that community properties—specifically, evenness, dominant species (Solidago altissima) relative abundance, and species richness—strongly regulate productivity resistance to drought and predict productivity invariability and tended to promote resistance to wet years. These community properties also responded to both wet and dry precipitation extremes and exhibited lagged responses that lasted into the next growing season. We infer that these connections between precipitation events, community properties, and resilience may lead to feedbacks impacting a plant community's resilience to subsequent precipitation events.Synthesis. By exploring the impacts of both drought and wet extremes, our work uncovers how precipitation events, which may not necessarily impact productivity directly, could still cryptically influence resilience via shifts in resilience‐promoting properties of the plant community. We conclude that these precipitation event‐driven community shifts may feedback to impact long‐term productivity resilience under climate change.more » « less
-
Abstract Nutrient availability and grazing are known as main drivers of grassland plant diversity, and increased nutrient availability and long‐term cessation of grazing often decrease local‐scale plant diversity. Experimental tests of mechanisms determining plant diversity focus mainly on vascular plants (VP), whereas non‐vascular plants (NVP, here bryophytes) have been ignored. It is therefore not known how the current models based on VPs predict the rates of total (NVP + VP) losses in plant diversity.Here we used plant community data, including VPs and NVPs, from nine sites in Europe and North America and belonging to the Nutrient Network experiment, to test whether neglecting NVPs leads to biased estimates of plant diversity loss rates. The plant communities were subjected to factorial addition of nitrogen (N), phosphorus (P), potassium with micronutrients (K+μ), as well as a grazing exclusion combined with multi‐nutrient fertilization (NPK+μ) treatment.We found that nutrient additions reduced both NVP and VP species richness, but the effects on NVP species richness were on average stronger than on VPs: NVP species richness decreased 67%, while VP species richness decreased 28%, causing their combined richness to decrease 38% in response to multi‐nutrient (NPK+μ) fertilization. Thus, VP diversity alone underestimated total plant diversity loss by 10 percentage points.Although NVP and VP species diversities similarly declined in response to N and NPK+μfertilizations, the evenness of NVPs increased and that of VPs remained unchanged. NP, NPK+μfertilization and NPK+μfertilization combined with grazing exclusion, associated with decreasing light availability at ground level, led to the strongest loss of NVP species or probability of NVP presence. However, grazing did not generally mitigate the fertilization effects.Synthesis. In nine grassland sites in Europe and North America, nutrient addition caused a larger relative decline in non‐vascular plant (NVP) than vascular plant species richness. Hence, not accounting for NVPs can lead to underestimation of losses in plant diversity in response to continued nutrient pollution of grasslands.more » « less
An official website of the United States government

