This content will become publicly available on October 15, 2024
- Award ID(s):
- 1845523
- NSF-PAR ID:
- 10489999
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- 2023 North American Power Symposium (NAPS)
- ISSN:
- 2833-003X
- ISBN:
- 979-8-3503-1509-7
- Page Range / eLocation ID:
- 1 to 6
- Subject(s) / Keyword(s):
- Forecasting, Regression analysis, State estimation, Time skew.
- Format(s):
- Medium: X
- Location:
- Asheville, NC, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Structural health monitoring of complex structures is often limited by restricted accessibility to locations of interest within the structure and availability of operational loads. In this work, a novel output-only virtual sensing scheme is proposed. This scheme involves the implementation of the modal expansion in an augmented Kalman filter. Performance of the proposed scheme is compared with two existing methods. Method 1 relies on a finite element model updating, batch data processing, and modal expansion (MUME) procedure. Method 2 employs a recursive sequential estimation algorithm, which feeds a substructure model of the instrumented system into an Augmented Kalman Filter (AKF). The new scheme referred to as Method 3 (ME-AKF), implements strain estimates generated via Modal Expansion into an AKF as virtual measurements. To demonstrate the applicability of the aforementioned methods, a rollercoaster connection was instrumented with accelerometers, strain rosettes, and an optical sensor. A comparison of estimated dynamic strain response at unmeasured locations using three alternative schemes is presented. Although acceleration measurements are used indirectly for model updating, the response-only methods presented in this research use only measurements from strain rosettes for strain history predictions and require no prior knowledge of input forces. Predicted strains using all methods are shown to sufficiently predict the measured strain time histories from a control location and lie within a 95% confidence interval calculated based on modal expansion equations. In addition, the proposed ME-AKF method shows improvement in strain predictions at unmeasured locations without the necessity of batch data processing. The proposed scheme shows high potential for real-time dynamic estimation of the strain and stress state of complex structures at unmeasured locations.more » « less
-
High cycle fatigue is a major cause of cracking in steel structures subjected to cyclic loading. It can result in substantial financial losses and structural failures compromising the safety of users. Uniaxial methods are in many cases insufficient for large in-service structures with complex geometry and connections subjected to multiaxial non-proportional loadings. A new method for fatigue life prediction for complex structures is presented using the critical plane method and the Kalman filter. The applicability of the methodology proposed is demonstrated and evaluated in a roller coaster support structure. Strain rosettes and accelerometers were installed on a support bracket near weld lines to measure responses. A substructure model is defined and used to estimate response prediction in the weld of the support bracket. The estimation of the input and the state estimation is performed using the augmented Kalman filter method, based on the response measurements and the substructured model. This new methodology is anticipated to be used for real-time fatigue prognosis of highway bridges.more » « less
-
Structures operating in high-rate dynamic environments, such as hypersonic vehicles, orbital space infrastructure, and blast mitigation systems, require microsecond (µs) decisionmaking. Advances in real-time sensing, edge-computing, and high-bandwidth computer memory are enabling emerging technologies such as High-rate structural health monitoring (HRSHM) to become more feasible. Due to the time restrictions such systems operate under, a target of 1 millisecond (ms) from event detection to decision-making is set at the goal to enable HRSHM. With minimizing latency in mind, a data-driven method that relies on time-series measurements processed in real-time to infer the state of the structure is investigated in this preliminary work. A methodology for deploying LSTM-based state estimators for structures using subsampled time-series vibration data is presented. The proposed estimator is deployed to an embedded real-time device and the achieved accuracy along with system timing are discussed. The proposed approach has shown potential for high-rate state estimation as it provides sufficient accuracy for the considered structure while a time-step of 2.5 ms is achieved. The Contributions of this work are twofold: 1) a framework for deploying LSTM models in real-time for high-rate state estimation, 2) an experimental validation of LSTMs running on a real-time computing system.more » « less
-
State estimation is key to both analysing physical mechanisms and enabling real-time control of fluid flows. A common estimation approach is to relate sensor measurements to a reduced state governed by a reduced-order model (ROM). (When desired, the full state can be recovered via the ROM.) Current methods in this category nearly always use a linear model to relate the sensor data to the reduced state, which often leads to restrictions on sensor locations and has inherent limitations in representing the generally nonlinear relationship between the measurements and reduced state. We propose an alternative methodology whereby a neural network architecture is used to learn this nonlinear relationship. A neural network is a natural choice for this estimation problem, as a physical interpretation of the reduced state–sensor measurement relationship is rarely obvious. The proposed estimation framework is agnostic to the ROM employed, and can be incorporated into any choice of ROMs derived on a linear subspace (e.g. proper orthogonal decomposition) or a nonlinear manifold. The proposed approach is demonstrated on a two-dimensional model problem of separated flow around a flat plate, and is found to outperform common linear estimation alternatives.more » « less
-
Abstract Structures operating in high-rate dynamic environments, such as hypersonic vehicles, orbital space infrastructure, and blast mitigation systems, require microsecond (μs) decision-making. Advances in real-time sensing, edge-computing, and high-bandwidth computer memory are enabling emerging technologies such as High-rate structural health monitoring (HR-SHM) to become more feasible. Due to the time restrictions such systems operate under, a target of 1 millisecond (ms) from event detection to decision-making is set at the goal to enable HR-SHM. With minimizing latency in mind, a data-driven method that relies on time-series measurements processed in real-time to infer the state of the structure is investigated in this preliminary work. A methodology for deploying LSTM-based state estimators for structures using subsampled time-series vibration data is presented. The proposed estimator is deployed to an embedded real-time device and the achieved accuracy along with system timing are discussed. The proposed approach has shown potential for high-rate state estimation as it provides sufficient accuracy for the considered structure while a time-step of 2.5 ms is achieved. The Contributions of this work are twofold: 1) a framework for deploying LSTM models in real-time for high-rate state estimation, 2) an experimental validation of LSTMs running on a real-time computing system.