skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Train to Vehicle: Toward Sustainable Transportation in Dense Urban Regions
This article investigates the feasibility of using regenerative energy from braking trains to charge electric buses in the context of New York City’s (NYC) subway and electric bus networks. A case study centered around NYC’s system has been performed to evaluate the benefits and challenges pertaining to the use of the preexisting subway network as a power supply for its new all-electric buses. The analysis shows that charging electric buses via the subway system during subway off-peak periods does not hinder regular train operation. In addition, having the charging electric buses connected to the third rail allows for more regenerative braking energy (RBE) to be recuperated, decreasing the energy wasted throughout the system. It was also found that including a wayside energy storage system (WESS) reduces the overall substation peak power consumption.  more » « less
Award ID(s):
1846940
PAR ID:
10490061
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Smart Cities
Date Published:
Journal Name:
Smart Cities
Volume:
6
Issue:
5
ISSN:
2624-6511
Page Range / eLocation ID:
2828 to 2848
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper investigates the deployment of solar technology throughout an electric railway system to accommodate tractive power needs. The approach is evaluated from both a technical and financial standpoint to better understand its overall feasibility. A case study is presented using New York City's subway system as the centre of deployment. As a means to both prevent excess voltages, as well as contribute to the city's shift to zero emission, parallel electric bus charging is also studied. It has been demonstrated that the proposed integration allows the subway system to still function without any hindrance to rail operation. The system is able to provide charging power for three to six electric buses per passenger station. In addition, the approach shows long‐term financial growth with average annual electric bill savings of approximately $50,000 per passenger station, each with a relatively short payback period of approximately 4 years. 
    more » « less
  2. The development of more sustainable urban transportation is prompting the need for better energy management techniques. Connected electric vehicles can take advantage of environmental information regarding the status of traffic lights. In this context, eco-approach and departure methods have been proposed in the literature. Integrating these methods with regenerative braking allows for safe, power-efficient navigation through intersections and crossroad layouts. This paper proposes rule- and fuzzy inference system-based strategies for a coupled eco-approach and departure regenerative braking system. This analysis is carried out through a numerical simulator based on a three-degree-of-freedom connected electric vehicle model. The powertrain is represented by a realistic power loss map in motoring and regenerative quadrants. The simulations aim to compare both longitudinal navigation strategies by means of relevant metrics: power, efficiency, comfort, and usage duty cycle in motor and generator modes. Numerical results show that the vehicle is able to yield safe navigation while focusing on energy regeneration through different navigation conditions. 
    more » « less
  3. We are witnessing a rapid growth of electrified vehicles due to the ever-increasing concerns on urban air quality and energy security. Compared to other types of electric vehicles, electric buses have not yet been prevailingly adopted worldwide due to their high owning and operating costs, long charging time, and the uneven spatial distribution of charging facilities. Moreover, the highly dynamic environment factors such as unpredictable traffic congestion, different passenger demands, and even the changing weather can significantly affect electric bus charging efficiency and potentially hinder the further promotion of large-scale electric bus fleets. To address these issues, in this article, we first analyze a real-world dataset including massive data from 16,359 electric buses, 1,400 bus lines, and 5,562 bus stops. Then, we investigate the electric bus network to understand its operating and charging patterns, and further verify the necessity and feasibility of a real-time charging scheduling. With such understanding, we design busCharging , a pricing-aware real-time charging scheduling system based on Markov Decision Process to reduce the overall charging and operating costs for city-scale electric bus fleets, taking the time-variant electricity pricing into account. To show the effectiveness of busCharging , we implement it with the real-world data from Shenzhen, which includes GPS data of electric buses, the metadata of all bus lines and bus stops, combined with data of 376 charging stations for electric buses. The evaluation results show that busCharging dramatically reduces the charging cost by 23.7% and 12.8% of electricity usage simultaneously. Finally, we design a scheduling-based charging station expansion strategy to verify our busCharging is also effective during the charging station expansion process. 
    more » « less
  4. When electrified transit systems make grid aware choices, improved social welfare is achieved by scheduling charging at low grid impact locations and times causing reduced loss, minimal power quality issues and reduced grid stress. Electrifying transit fleet has numerous challenges like non availability of buses during charging, varying charging costs, etc., that are related the electric grid behavior. However, transit systems do not have access to the information about the co-evolution of the grid’s power flow and therefore cannot account for the power grid’s needs in its day to day operation. In this paper we propose a framework of transportation-grid co-simulation analyzing the spatio-temporal interaction between the transit operations with electric buses and the power distribution grid. Real-world data for a day’s traffic from Chattanooga city’s transit system is simulated in SUMO and integrated with a realistic distribution grid simulation (using GridLAB-D) to understand the grid impact due to the transit electrification. Charging information is obtained from the transportation simulation to feed into grid simulation to assess the impact of charging. We also discuss the impact to the grid with higher degree of Transit electrification that further necessitates such an integrated Transportation-Grid co-simulation to operate the integrated system optimally. Our future work includes extending the platform for optimizing the charging and trip assignment operations. 
    more » « less
  5. Electric vehicles (EVs) play a crucial role in achieving sustainability goals, mitigating energy crises, and reducing air pollution. However, their rapid adoption poses significant challenges to the power grid, particularly during peak charging periods, necessitating advanced load management strategies. This study introduces an artificial intelligence (AI)-integrated optimal charging framework designed to facilitate fast charging and mitigate grid stress by smoothing the “duck curve”. Data from Caltech’s Adaptive Charging Network (ACN) at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) site was collected and categorized into day and night patterns to predict charging duration based on key features, including start charging time and energy requested. The AI-driven charging strategy developed optimizes energy management, reduces peak loads, and alleviates grid strain. Additionally, the study evaluates the impact of integrating 1.5 million, 3 million, and 5 million EVs under various AI-based charging strategies, demonstrating the framework’s effectiveness in managing large-scale EV adoption. The peak power consumption reaches around 22,000 MW without EVs, 25,000 MW for 1.5 million EVs, 28,000 MW for 3 million EVs, and 35,000 MW for 5 million EVs without any charging strategy. By implementing an AI-driven optimal charging optimization strategy that considers both early charging and duck curve smoothing, the peak demand is reduced by approximately 16% for 1.5 million EVs, 21.43% for 3 million EVs, and 34.29% for 5 million EVs. 
    more » « less