skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interpretation issues with “genomic vulnerability” arise from conceptual issues in local adaptation and maladaptation
Abstract As climate change causes the environment to shift away from the local optimum that populations have adapted to, fitness declines are predicted to occur. Recently, methods known as genomic offsets (GOs) have become a popular tool to predict population responses to climate change from landscape genomic data. Populations with a high GO have been interpreted to have a high “genomic vulnerability” to climate change. GOs are often implicitly interpreted as a fitness offset, or a change in fitness of an individual or population in a new environment compared to a reference. However, there are several different types of fitness offset that can be calculated, and the appropriate choice depends on the management goals. This study uses hypothetical and empirical data to explore situations in which different types of fitness offsets may or may not be correlated with each other or with a GO. The examples reveal that even when GOs predict fitness offsets in a common garden experiment, this does not necessarily validate their ability to predict fitness offsets to environmental change. Conceptual examples are also used to show how a large GO can arise under a positive fitness offset, and thus cannot be interpreted as a population vulnerability. These issues can be resolved with robust validation experiments that can evaluate which fitness offsets are correlated with GOs.  more » « less
Award ID(s):
2043905
PAR ID:
10490084
Author(s) / Creator(s):
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Evolution Letters
ISSN:
2056-3744
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Genomic data and machine learning approaches have gained interest due to their potential to identify adaptive genetic variation across populations and to assess species vulnerability to climate change. By identifying gene–environment associations for putatively adaptive loci, these approaches project changes to adaptive genetic composition as a function of future climate change (genetic offsets), which are interpreted as measuring the future maladaptation of populations due to climate change. In principle, higher genetic offsets relate to increased population vulnerability and therefore can be used to set priorities for conservation and management. However, it is not clear how sensitive these metrics are to the intensity of population and individual sampling. Here, we use five genomic datasets with varying numbers of SNPs (NSNPs = 7006–1,398,773), sampled populations (Npop = 23–47) and individuals (Nind = 185–595) to evaluate the estimation sensitivity of genetic offsets to varying degrees of sampling intensity. We found that genetic offsets are sensitive to the number of populations being sampled, especially with less than 10 populations and when genetic structure is high. We also found that the number of individuals sampled per population had small effects on the estimation of genetic offsets, with more robust results when five or more individuals are sampled. Finally, uncertainty associated with the use of different future climate scenarios slightly increased estimation uncertainty in the genetic offsets. Our results suggest that sampling efforts should focus on increasing the number of populations, rather than the number of individuals per populations, and that multiple future climate scenarios should be evaluated to ascertain estimation sensitivity. 
    more » « less
  2. Abstract Gradient Forest (GF) is a machine learning algorithm designed to analyze spatial patterns of biodiversity as a function of environmental gradients. An offset measure between the GF‐predicted environmental association of adapted alleles and a new environment (GF Offset) is increasingly being used to predict the loss of environmentally adapted alleles under rapid environmental change, but remains mostly untested for this purpose. Here, we explore the robustness of GF Offset to assumption violations, and its relationship to measures of fitness, using SLiM simulations with explicit genome architecture and a spatial metapopulation. We evaluate measures of GF Offset in: (1) a neutral model with no environmental adaptation; (2) a monogenic “population genetic” model with a single environmentally adapted locus; and (3) a polygenic “quantitative genetic” model with two adaptive traits, each adapting to a different environment. We found GF Offset to be broadly correlated with fitness offsets under both single locus and polygenic architectures. However, neutral demography, genomic architecture, and the nature of the adaptive environment can all confound relationships between GF Offset and fitness. GF Offset is a promising tool, but it is important to understand its limitations and underlying assumptions, especially when used in the context of predicting maladaptation. 
    more » « less
  3. Abstract Global change is impacting biodiversity across all habitats on earth. New selection pressures from changing climatic conditions and other anthropogenic activities are creating heterogeneous ecological and evolutionary responses across many species' geographic ranges. Yet we currently lack standardised and reproducible tools to effectively predict the resulting patterns in species vulnerability to declines or range changes.We developed an informatic toolbox that integrates ecological, environmental and genomic data and analyses (environmental dissimilarity, species distribution models, landscape connectivity, neutral and adaptive genetic diversity, genotype‐environment associations and genomic offset) to estimate population vulnerability. In our toolbox, functions and data structures are coded in a standardised way so that it is applicable to any species or geographic region where appropriate data are available, for example individual or population sampling and genomic datasets (e.g. RAD‐seq, ddRAD‐seq, whole genome sequencing data) representing environmental variation across the species geographic range.To demonstrate multi‐species applicability, we apply our toolbox to three georeferenced genomic datasets for co‐occurring East African spiny reed frogs (Afrixalus fornasini, A. delicatusandA. sylvaticus) to predict their population vulnerability, as well as demonstrating that range loss projections based on adaptive variation can be accurately reproduced from a previous study using data for two European bat species (Myotis escaleraiandM. crypticus).Our framework sets the stage for large scale, multi‐species genomic datasets to be leveraged in a novel climate change vulnerability framework to quantify intraspecific differences in genetic diversity, local adaptation, range shifts and population vulnerability based on exposure, sensitivity and landscape barriers. 
    more » « less
  4. ABSTRACT Genomic projections of (mal)adaptation under future climate change, known as genomic offset, faces limited application due to challenges in validating model predictions. Individuals inhabiting regions with high genomic offset are expected to experience increased levels of physiological stress as a result of climate change, but documenting such stress can be challenging in systems where experimental manipulations are not possible. One increasingly common method for documenting physiological costs associated with stress in individuals is to measure the relative length of telomeres—the repetitive regions on the caps of chromosomes that are known to shorten at faster rates in more adverse conditions. Here we combine models of genomic offsets with measures of telomere shortening in a migratory bird, the yellow warbler (Setophaga petechia), and find a strong correlation between genomic offset, telomere length and population decline. While further research is needed to fully understand these links, our results support the idea that birds in regions where climate change is happening faster are experiencing more stress and that such negative effects may help explain the observed population declines. 
    more » « less
  5. Abstract Identifying genetic conservation units (CUs) in threatened species is critical for the preservation of adaptive capacity and evolutionary potential in the face of climate change. However, delineating CUs in highly mobile species remains a challenge due to high rates of gene flow and genetic signatures of isolation by distance. Even when CUs are delineated in highly mobile species, the CUs often lack key biological information about what populations have the most conservation need to guide management decisions. Here we implement a framework for CU identification in the Canada Warbler (Cardellina canadensis), a migratory bird species of conservation concern, and then integrate demographic modelling and genomic offset to guide conservation decisions. We find that patterns of whole genome genetic variation in this highly mobile species are primarily driven by putative adaptive variation. Identification of CUs across the breeding range revealed that Canada Warblers fall into two evolutionarily significant units (ESU), and three putative adaptive units (AUs) in the South, East, and Northwest. Quantification of genomic offset, a metric of genetic changes necessary to maintain current gene–environment relationships, revealed significant spatial variation in climate vulnerability, with the Northwestern AU being identified as the most vulnerable to future climate change. Alternatively, quantification of past population trends within each AU revealed the steepest population declines have occurred within the Eastern AU. Overall, we illustrate that genomics‐informed CUs provide a strong foundation for identifying current and future regional threats that can be used to inform management strategies for a highly mobile species in a rapidly changing world. 
    more » « less