skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tracy–Widom distribution for the edge eigenvalues of elliptical model
Abstract In this paper, we study the largest eigenvalues of sample covariance matrices with elliptically distributed data. We consider the sample covariance matrix $$Q=YY^{*},$$ where the data matrix $$Y \in \mathbb{R}^{p \times n}$$ contains i.i.d. $$p$$-dimensional observations $$\textbf{y}_{i}=\xi _{i}T\textbf{u}_{i},\;i=1,\dots ,n.$$ Here $$\textbf{u}_{i}$$ is distributed on the unit sphere, $$\xi _{i} \sim \xi $$ is some random variable that is independent of $$\textbf{u}_{i}$$ and $$T^{*}T=\varSigma $$ is some deterministic positive definite matrix. Under some mild regularity assumptions on $$\varSigma ,$$ assuming $$\xi ^{2}$$ has bounded support and certain decay behaviour near its edge so that the limiting spectral distribution of $$Q$$ has a square root decay behaviour near the spectral edge, we prove that the Tracy–Widom law holds for the largest eigenvalues of $$Q$$ when $$p$$ and $$n$$ are comparably large. Based on our results, we further construct some useful statistics to detect the signals when they are corrupted by high dimensional elliptically distributed noise.  more » « less
Award ID(s):
2306439
PAR ID:
10583362
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Information and Inference: A Journal of the IMA
Volume:
14
Issue:
2
ISSN:
2049-8772
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Covariance matrices are fundamental to the analysis and forecast of economic, physical and biological systems. Although the eigenvalues $$\{\lambda _i\}$$ and eigenvectors $$\{\boldsymbol{u}_i\}$$ of a covariance matrix are central to such endeavours, in practice one must inevitably approximate the covariance matrix based on data with finite sample size $$n$$ to obtain empirical eigenvalues $$\{\tilde{\lambda }_i\}$$ and eigenvectors $$\{\tilde{\boldsymbol{u}}_i\}$$, and therefore understanding the error so introduced is of central importance. We analyse eigenvector error $$\|\boldsymbol{u}_i - \tilde{\boldsymbol{u}}_i \|^2$$ while leveraging the assumption that the true covariance matrix having size $$p$$ is drawn from a matrix ensemble with known spectral properties—particularly, we assume the distribution of population eigenvalues weakly converges as $$p\to \infty $$ to a spectral density $$\rho (\lambda )$$ and that the spacing between population eigenvalues is similar to that for the Gaussian orthogonal ensemble. Our approach complements previous analyses of eigenvector error that require the full set of eigenvalues to be known, which can be computationally infeasible when $$p$$ is large. To provide a scalable approach for uncertainty quantification of eigenvector error, we consider a fixed eigenvalue $$\lambda $$ and approximate the distribution of the expected square error $$r= \mathbb{E}\left [\| \boldsymbol{u}_i - \tilde{\boldsymbol{u}}_i \|^2\right ]$$ across the matrix ensemble for all $$\boldsymbol{u}_i$$ associated with $$\lambda _i=\lambda $$. We find, for example, that for sufficiently large matrix size $$p$$ and sample size $n> p$, the probability density of $$r$$ scales as $1/nr^2$. This power-law scaling implies that the eigenvector error is extremely heterogeneous—even if $$r$$ is very small for most eigenvectors, it can be large for others with non-negligible probability. We support this and further results with numerical experiments. 
    more » « less
  2. We present decidability results for a sub-class of “non-interactive” simulation problems, a well-studied class of problems in information theory. A non-interactive simulation problem is specified by two distributions P(x, y) and Q(u, v): The goal is to determine if two players, Alice and Bob, that observe sequences Xn and Y n respectively where {(Xi, Yi)}n i=1 are drawn i.i.d. from P(x, y) can generate pairs U and V respectively (without communicating with each other) with a joint distribution that is arbitrarily close in total variation to Q(u, v). Even when P and Q are extremely simple: e.g., P is uniform on the triples {(0, 0), (0, 1), (1, 0)} and Q is a “doubly symmetric binary source”, i.e., U and V are uniform ±1 variables with correlation say 0.49, it is open if P can simulate Q. In this work, we show that whenever P is a distribution on a finite domain and Q is a 2 × 2 distribution, then the non-interactive simulation problem is decidable: specifically, given δ > 0 the algorithm runs in time bounded by some function of P and δ and either gives a non-interactive simulation protocol that is δ-close to Q or asserts that no protocol gets O(δ)-close to Q. The main challenge to such a result is determining explicit (computable) convergence bounds on the number n of samples that need to be drawn from P(x, y) to get δ-close to Q. We invoke contemporary results from the analysis of Boolean functions such as the invariance principle and a regularity lemma to obtain such explicit bounds. 
    more » « less
  3. F or c e d at a f or a fl a p pi n g f oil e n er g y h ar v e st er wit h a cti v e l e a di n g e d g e m oti o n o p er ati n g i n t h e l o w r e d u c e d fr e q u e n c y r a n g e i s c oll e ct e d t o d et er mi n e h o w l e a di n g e d g e m oti o n aff e ct s e n er g y h ar v e sti n g p erf or m a n c e. T h e f oil pi v ot s a b o ut t h e mi dc h or d a n d o p er at e s i n t h e l o w r e d u c e d fr e q u e n c y r a n g e of 𝑓𝑓 𝑓𝑓 / 𝑈𝑈 ∞ = 0. 0 6 , 0. 0 8, a n d 0. 1 0 wit h 𝑅𝑅 𝑅𝑅 = 2 0 ,0 0 0 − 3 0 ,0 0 0 , wit h a pit c hi n g a m plit u d e of 𝜃𝜃 0 = 7 0 ∘ , a n d a h e a vi n g a m plit u d e of ℎ 0 = 0. 5 𝑓𝑓 . It i s f o u n d t h at l e a di n g e d g e m oti o n s t h at r e d u c e t h e eff e cti v e a n gl e of att a c k e arl y t h e str o k e w or k t o b ot h i n cr e a s e t h e lift f or c e s a s w ell a s s hift t h e p e a k lift f or c e l at er i n t h e fl a p pi n g str o k e. L e a di n g e d g e m oti o n s i n w hi c h t h e eff e cti v e a n gl e of att a c k i s i n cr e a s e d e arl y i n t h e str o k e s h o w d e cr e a s e d p erf or m a n c e. I n a d diti o n a di s cr et e v ort e x m o d el wit h v ort e x s h e d di n g at t h e l e a di n g e d g e i s i m pl e m e nt f or t h e m oti o n s st u di e d; it i s f o u n d t h at t h e m e c h a ni s m f or s h e d di n g at t h e l e a di n g e d g e i s n ot a d e q u at e f or t hi s p ar a m et er r a n g e a n d t h e m o d el c o n si st e ntl y o v er pr e di ct s t h e a er o d y n a mi c f or c e s. 
    more » « less
  4. For multivariate stationary time series many important properties, such as partial correlation, graphical models and autoregressive representations are encoded in the inverse of its spectral density matrix. This is not true for nonstationary time series, where the pertinent information lies in the inverse infinite dimensional covariance matrix operator associated with the multivariate time series. This necessitates the study of the covariance of a multivariate nonstationary time series and its relationship to its inverse. We show that if the rows/columns of the infinite dimensional covariance matrix decay at a certain rate then the rate (up to a factor) transfers to the rows/columns of the inverse covariance matrix. This is used to obtain a nonstationary autoregressive representation of the time series and a Baxter-type bound between the parameters of the autoregressive infinite representation and the corresponding finite autoregressive projection. The aforementioned results lay the foundation for the subsequent analysis of locally stationary time series. In particular, we show that smoothness properties on the covariance matrix transfer to (i) the inverse covariance (ii) the parameters of the vector autoregressive representation and (iii) the partial covariances. All results are set up in such a way that the constants involved depend only on the eigenvalue of the covariance matrix and can be applied in the high-dimensional settings with non-diverging eigenvalues. 
    more » « less
  5. Abstract We study the Brownian motion on the non-compact Grassmann manifold $$\frac {\textbf {U}(n-k,k)} {\textbf {U}(n-k)\textbf {U}(k)}$$ and some of its functionals. The key point is to realize this Brownian motion as a matrix diffusion process, use matrix stochastic calculus and take advantage of the hyperbolic Stiefel fibration to study a functional that can be understood in that setting as a generalized stochastic area process. In particular, a connection to the generalized Maass Laplacian of the complex hyperbolic space is presented and applications to the study of Brownian windings in the Lie group $$\textbf {U}(n-k,k)$$ are then given. 
    more » « less