skip to main content


Title: Poster Abstract: O-RAN Signaling Optimizations for Improved IoT Handover Performance in 5G Networks
IoT systems require a wireless infrastructure that supports 5G devices, including handovers between heterogeneous and/or small cell radio access networks. These networks are subject to increased radio link failures and loss of IoT network function. 3GPP new radio (NR) applications include multihoming, i.e., simultaneously connecting devices, and handover, i.e., changing the point of access to the network. This work leverages the open radio access network (O-RAN) alliance, which specifies a new open architecture with intelligent controllers, to improve handover management. A new feedback-based time-to-trigger (TTT) handover mechanism is introduced. Improved throughput and reduced radio link failures over other techniques were achieved.  more » « less
Award ID(s):
2030122
PAR ID:
10490168
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
IoTDI '23: Proceedings of the 8th ACM/IEEE Conference on Internet of Things Design and Implementation
ISBN:
9798400700378
Page Range / eLocation ID:
454 to 455
Format(s):
Medium: X
Location:
San Antonio TX USA
Sponsoring Org:
National Science Foundation
More Like this
  1. New capabilities in wireless network security have been enabled by deep learning that leverages and exploits signal patterns and characteristics in Radio Frequency (RF) data captured by radio receivers to identify and authenticate radio transmitters. Open-set detection is an area of deep learning that aims to identify RF data samples captured from new devices during deployment (aka inference) that were not part of the training set; i.e. devices that were unseen during training. Past work in open-set detection has mostly been applied to independent and identically distributed data such as images. In contrast, RF signal data present a unique set of challenges as the data forms a time series with non-linear time dependencies among the samples. In this paper, we introduce a novel open-set detection approach for RF data-driven device identification that extracts its neural network features from patterns of the hidden state values within a Convolutional Neural Network Long Short-Term Memory (CNN+LSTM) model. Experimental results obtained using real datasets collected from 15 IoT devices, each enabled with LoRa, wireless-Wi-Fi, and wired-Wi-Fi communication protocols, show that our new approach greatly improves the area under the precision-recall curve, and hence, can be used successfully to monitor and control unauthorized network access of wireless devices.

     
    more » « less
  2. Recent research has shown that in-network observers of WiFi communication (i.e., observers who have joined the WiFi network) can obtain much information regarding the types, user identities, and activities of Internet-of-Things (IoT) devices in the network. What has not been explored is the question of how much information can be inferred by an out-of-network observer who does not have access to the WiFi network. This attack scenario is more realistic and much harder to defend against, thus imposes a real threat to user privacy. In this paper, we investigate privacy leakage derived from an out-of-network traffic eavesdropper on the encrypted WiFi traffic of popular IoT devices. We instrumented a testbed of 12 popular IoT devices and evaluated multiple machine learning methods for fingerprinting and inferring what IoT devices exist in a WiFi network. By only exploiting the WiFi frame header information, we have achieved 95% accuracy in identifying the devices and often their working status. This study demonstrates that information leakage and privacy attack is a real threat for WiFi networks and IoT applications. 
    more » « less
  3. In intelligent IoT networks, an IoT user is capable of sensing the spectrum and learning from its observation to dynamically access the wireless channels without interfering with the primary user’s signal. The network, however, is potentially subject to primary user emulation and jamming attacks. In the existing works, various attacks and defense mechanisms for spectrum sharing in IoT networks have been proposed. This paper systematically conducts a targeted survey of these efforts and proposes new approaches for future studies to strengthen the communication of IoT users. Our proposed methods involve the development of intelligent IoT devices that go beyond existing solutions, enabling them not only to share the spectrum with licensed users but also to effectively thwart potential attackers. First, considering practical aspects of imperfect spectrum sensing and delay, we propose to utilize online machine learning-based approaches to design spectrum sharing attack policies. We also investigate the attacker’s channel observation/sensing capabilities to design attack policies using time-varying feedback graph models. Second, taking into account the IoT devices’ practical characteristics of channel switching delay, we propose online learning-based channel access policies for optimal defense by the IoT device to guarantee the maximum network capacity. We then highlight future research directions, focusing on the defense of IoT devices against adaptive attackers. Finally, aided by concepts from intelligence and statistical factor analysis tools, we provide a workflow which can be utilized for devices’ intelligence factors impact analysis on the defense performance. 
    more » « less
  4. Green wireless networks Wake-up radio Energy harvesting Routing Markov decision process Reinforcement learning 1. Introduction With 14.2 billions of connected things in 2019, over 41.6 billions expected by 2025, and a total spending on endpoints and services that will reach well over $1.1 trillion by the end of 2026, the Internet of Things (IoT) is poised to have a transformative impact on the way we live and on the way we work [1–3]. The vision of this ‘‘connected continuum’’ of objects and people, however, comes with a wide variety of challenges, especially for those IoT networks whose devices rely on some forms of depletable energy support. This has prompted research on hardware and software solutions aimed at decreasing the depen- dence of devices from ‘‘pre-packaged’’ energy provision (e.g., batteries), leading to devices capable of harvesting energy from the environment, and to networks – often called green wireless networks – whose lifetime is virtually infinite. Despite the promising advances of energy harvesting technologies, IoT devices are still doomed to run out of energy due to their inherent constraints on resources such as storage, processing and communica- tion, whose energy requirements often exceed what harvesting can provide. The communication circuitry of prevailing radio technology, especially, consumes relevant amount of energy even when in idle state, i.e., even when no transmissions or receptions occur. Even duty cycling, namely, operating with the radio in low energy consumption ∗ Corresponding author. E-mail address: koutsandria@di.uniroma1.it (G. Koutsandria). https://doi.org/10.1016/j.comcom.2020.05.046 (sleep) mode for pre-set amounts of time, has been shown to only mildly alleviate the problem of making IoT devices durable [4]. An effective answer to eliminate all possible forms of energy consumption that are not directly related to communication (e.g., idle listening) is provided by ultra low power radio triggering techniques, also known as wake-up radios [5,6]. Wake-up radio-based networks allow devices to remain in sleep mode by turning off their main radio when no communication is taking place. Devices continuously listen for a trigger on their wake-up radio, namely, for a wake-up sequence, to activate their main radio and participate to communication tasks. Therefore, devices wake up and turn their main radio on only when data communication is requested by a neighboring device. Further energy savings can be obtained by restricting the number of neighboring devices that wake up when triggered. This is obtained by allowing devices to wake up only when they receive specific wake-up sequences, which correspond to particular protocol requirements, including distance from the destina- tion, current energy status, residual energy, etc. This form of selective awakenings is called semantic addressing [7]. Use of low-power wake-up radio with semantic addressing has been shown to remarkably reduce the dominating energy costs of communication and idle listening of traditional radio networking [7–12]. This paper contributes to the research on enabling green wireless networks for long lasting IoT applications. Specifically, we introduce a ABSTRACT This paper presents G-WHARP, for Green Wake-up and HARvesting-based energy-Predictive forwarding, a wake-up radio-based forwarding strategy for wireless networks equipped with energy harvesting capabilities (green wireless networks). Following a learning-based approach, G-WHARP blends energy harvesting and wake-up radio technology to maximize energy efficiency and obtain superior network performance. Nodes autonomously decide on their forwarding availability based on a Markov Decision Process (MDP) that takes into account a variety of energy-related aspects, including the currently available energy and that harvestable in the foreseeable future. Solution of the MDP is provided by a computationally light heuristic based on a simple threshold policy, thus obtaining further computational energy savings. The performance of G-WHARP is evaluated via GreenCastalia simulations, where we accurately model wake-up radios, harvestable energy, and the computational power needed to solve the MDP. Key network and system parameters are varied, including the source of harvestable energy, the network density, wake-up radio data rate and data traffic. We also compare the performance of G-WHARP to that of two state-of-the-art data forwarding strategies, namely GreenRoutes and CTP-WUR. Results show that G-WHARP limits energy expenditures while achieving low end-to-end latency and high packet delivery ratio. Particularly, it consumes up to 34% and 59% less energy than CTP-WUR and GreenRoutes, respectively. 
    more » « less
  5. The security of Internet-of-Things (IoT) devices in the residential environment is important due to their widespread presence in homes and their sensing and actuation capabilities. However, securing IoT devices is challenging due to their varied designs, deployment longevity, multiple manufacturers, and potentially limited availability of long-term firmware updates. Attackers have exploited this complexity by specifically targeting IoT devices, with some recent high-profile cases affecting millions of devices. In this work, we explore access control mechanisms that tightly constrain access to devices at the residential router, with the goal of precluding access that is inconsistent with legitimate users' goals. Since many residential IoT devices are controlled via applications on smartphones, we combine application sensors on phones with sensors at residential routers to analyze workflows. We construct stateful filters at residential routers that can require user actions within a registered smartphone to enable network access to an IoT device. In doing so, we constrain network packets only to those that are consistent with the user's actions. In our experiments, we successfully identified 100% of malicious traffic while correctly allowing more than 98% of legitimate network traffic. The approach works across device types and manufacturers with straightforward API and state machine construction for each new device workflow. 
    more » « less