skip to main content


This content will become publicly available on April 3, 2025

Title: Learning-Based Secure Spectrum Sharing for Intelligent IoT Networks
In intelligent IoT networks, an IoT user is capable of sensing the spectrum and learning from its observation to dynamically access the wireless channels without interfering with the primary user’s signal. The network, however, is potentially subject to primary user emulation and jamming attacks. In the existing works, various attacks and defense mechanisms for spectrum sharing in IoT networks have been proposed. This paper systematically conducts a targeted survey of these efforts and proposes new approaches for future studies to strengthen the communication of IoT users. Our proposed methods involve the development of intelligent IoT devices that go beyond existing solutions, enabling them not only to share the spectrum with licensed users but also to effectively thwart potential attackers. First, considering practical aspects of imperfect spectrum sensing and delay, we propose to utilize online machine learning-based approaches to design spectrum sharing attack policies. We also investigate the attacker’s channel observation/sensing capabilities to design attack policies using time-varying feedback graph models. Second, taking into account the IoT devices’ practical characteristics of channel switching delay, we propose online learning-based channel access policies for optimal defense by the IoT device to guarantee the maximum network capacity. We then highlight future research directions, focusing on the defense of IoT devices against adaptive attackers. Finally, aided by concepts from intelligence and statistical factor analysis tools, we provide a workflow which can be utilized for devices’ intelligence factors impact analysis on the defense performance.  more » « less
Award ID(s):
2229885
PAR ID:
10522325
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-0927-0
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Location:
San Francisco, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Password-based mobile user authentication is vulnerable to a variety of security threats. Shoulder-surfing is the key to those security threats. Despite a large body of research on password security with mobile devices, existing studies have focused on shaping the security behavior of mobile users by enhancing the strengths of user passwords or by establishing secure password composition policies. There is little understanding of how an attacker actually goes about observing the password of a target user. This study empirically examines attackers’ behaviors in observing passwordbased mobile user authentication sessions across the three observation attempts. It collects data through a longitudinal user study and analyzes the data collected through a system log. The results reveal several behavioral patterns of attackers. The findings suggest that attackers are strategic in deploying attacks of shoulder-surfing. The findings have implications for enhancing users’ password security and refining organizations’ password composition policies. 
    more » « less
  2. Industrial Internet of Things (IIoT) has been shown to be of great value to the deployment of smart industrial environment. With the immense growth of IoT devices, dynamic spectrum sharing is introduced, envisaged as a promising solution to the spectrum shortage in IIoT. Meanwhile, cyber-physical safety issue remains to be a great concern for the reliable operation of IIoT system. In this paper, we consider the dynamic spectrum access in IIoT under a Received Signal Strength (RSS) based adversarial localization attack. We employ a practical and effective power perturbation approach to mitigate the localization threat on the IoT devices and cast the privacy-preserving spectrum sharing problem as a stochastic channel selection game. To address the randomness induced by the power perturbation approach, we develop a two-timescale distributed learning algorithm that converges almost surely to the set of correlated equilibria of the game. The numerical results show the convergence of the algorithm and corroborate that the design of two-timescale learning process effectively alleviates the network throughput degradation brought by the power perturbation procedure. 
    more » « less
  3. Spectrum sensing enables secondary users in a cognitive radio network to opportunistically access portions of the spectrum left idle by primary users. Tracking spectrum holes jointly in time and frequency over a wide spectrum band is a challenging task. In one approach to wideband temporal sensing, the spectrum band is partitioned into narrowband subchannels of fixed bandwidth, which are then characterized via hidden Markov modeling using average power or energy measurements as observation data. Adjacent, correlated subchannels are recursively aggregated into channels of variable bandwidths, corresponding to the primary user signals. Thus, wideband temporal sensing is transformed into a multiband sensing scenario by identifying the primary user channels in the spectrum band. However, future changes in the configuration of the primary user channels in the multiband setup cannot generally be detected using an energy detector front end for spectrum sensing. We propose the use of a cepstral feature vector to detect changes in the spectrum envelope of a primary user channel. Our numerical results show that the cepstrum-based spectrum envelope detector performs well under moderate to high signal-to-noise ratio conditions. 
    more » « less
  4. The number of smart home IoT (Internet of Things) devices has been growing fast in recent years. Along with the great benefits brought by smart home devices, new threats have appeared. One major threat to smart home users is the compromise of their privacy by traffic analysis (TA) attacks. Researchers have shown that TA attacks can be performed successfully on either plain or encrypted traffic to identify smart home devices and infer user activities. Tunneling traffic is a very strong countermeasure to existing TA attacks. However, in this work, we design a Signature based Tunneled Traffic Analysis (STTA) attack that can be effective even on tunneled traffic. Using a popular smart home traffic dataset, we demonstrate that our attack can achieve an 83% accuracy on identifying 14 smart home devices. We further design a simple defense mechanism based on adding uniform random noise to effectively protect against our TA attack without introducing too much overhead. We prove that our defense mechanism achieves approximate differential privacy. 
    more » « less
  5. Computing is transitioning from single-user devices to the Internet of Things (IoT), in which multiple users with complex social relationships interact with a single device. Currently deployed techniques fail to provide usable access-control specification or authentication in such settings. In this paper, we begin reenvisioning access control and authentication for the home IoT. We propose that access control focus on IoT capabilities (i. e., certain actions that devices can perform), rather than on a per-device granularity. In a 425-participant online user study, we find stark differences in participants’ desired access-control policies for different capabilities within a single device, as well as based on who is trying to use that capability. From these desired policies, we identify likely candidates for default policies. We also pinpoint necessary primitives for specifying more complex, yet desired, access-control policies. These primitives range from the time of day to the current location of users. Finally, we discuss the degree to which different authentication methods potentially support desired policies. 
    more » « less